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1. Introduction
1.1. General

We are interested in this paper in the approximation ordshdf-invariant(Sl) spaces
of functions defined on the Euclidean spd@#, 4 >1. Such spaces play an important
role in several areas of real analysis, including spline approximation, wavelets, subdivision
algorithms, uniform sampling and Gabor systems. Itis not surprising, thus, that the theory of
approximation and representation from Sl spaces received significant attention and enjoyed
rapid development in the last 10-15 years. The determination and understanding of the
approximation ordersf these spaces is among the main pillars of this theory.

As the title of this article indicates, we restrict our attention to approximation in Sobolev
spaces: given € R, we denote by, (R4) theSobolev space of smoothnesss, i.e., the space
of all tempered distributionswhose Fourier transform is locally iby(R¢) and satisfies

2 — 25 A2
11y = [ L1 DPIFR < oo,

(Here and elsewherg; | is the Euclidean distance ®.) A closed subspacg c W3 (R?)
is shift-invariantif it is invariant under alkhifts i.e., integer translations, or more generally,
scaled integer translations: given a fixed- 0,

for everya € hZ? and everyf € Ws(RY), feS= f(-+a) €S.

When necessary, one identifies the underlying parantetsr referring toS as h-shift-
invariant, and/or by denoting the S| spaceSdsAlso, sometimes, in order to emphasize
the ambient spacwg(Rd) we write S(W5), instead of simpl\5. The smallest Sl space that
contains a giver® C W;(I]%Rd) is denoted by

Sp:=Sp(W5),

or, in complete detailsg(Wg), and we refer then td® as agenerating sebf S¢. The basic
objective of Sl space theory is to understand properties of Sl spaces in terms of properties
of their generating sets. In this regard we recall that an Sl space generatesingyeton
@ = {¢} is known agprincipal shift-invariant(PSI), while the one generated byimite @
is referred to aéinitely generated shift-invarian(FSl).

Now, assume that we are giveteaderS:=(S":=S"(W3));-0 of Sl spaces. Let > s.
We say thatS provides approximation order §n Wg(Rd)), if, for every f € Wg([RRd),

i hy.__ _ k—s
dist (. 8"):= Inf ILf = gl ety SCH I Dy oy

with the constant independent dfandh. As is essentially knowf39,40,16and developed
fully in this paper), the above notion of approximation order depends stronddpoetonly
mildly ons. The ladde& is PSI or FSl if each of its componerté is a PSI, or, respectively,
FSI space.
The literature on approximation orders of Sl spaces is vast, and it is not within the scope
of this paper to provide a comprehensive review of it. We refer to the introduction and the
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references of3] as well as to the exposition and the references in the survey ditkje
Many specific results on the topic are reviewed in the body of this article. In particular,
a complete characterization of tlig-approximation orders (i.e., the case= 0) of PSI
ladders is obtained if8], while the analogous results for FSI ladders are obtain¢gH8].
There are also numerous results on approximations in other norms, for examplg, in
Results and references in this direction can be fourj@n25]. In addition, we refer the
reader td14,23,30,33For information on approximation properties of refinable Sl spaces,
and to[17,19,20,22,27-29,32pr results on wavelet constructions based on Sl spaces.

1.2. Motivation

While the current level of mathematical understanding of the issue of approximation
orders of Sl spaces is quite advanced, there are numerous gaps and inconsistencies in it. This
is exactly the motivation behind the present endeavor: obtaining seamless, cohesive (and, so
we hope, final) theory. We provide a few examples for the “gaps” and “inconsistencies” in
the state-of-the-art theory. Let us first define two important classes of Sl ladders: stationary
ladders, and local ones.

Definition. Let S be an Sl ladder. We say thétis stationaryif, for everys > 0, §" =
SY(./h)y:={f(-/h) : f e S}. Given a stationary ladder, we say tkfats alsolocal if S*
is FSI and is generated bycampactly supported.

Discussion 1.(1) Let us assume th&tis PSI, stationary and local. Then the entire ladder
is determined by the (compactly supported) generatof S* (since the other spaces in
the ladder are dilations &f?). In this case, one usually refers¢oasthe generator of the
ladder. The current theory covers the case 0, and shows that the approximation order
in Ly (as well as inW3, s > 0) provided by such ladders is intimately related to the order
of the zeros thaﬁ, the Fourier transform o$, has at the punctured latticer29\0 (cf.
Section 3.2). The smoothness ¢f on the other hand, does not play any role, provided,
of course, thatp € Lo (which is required for the definition af,-orders to make sense).
Thus, if we replaceb € L, by its convolution product with a smooth generic mollifier, the
Lo-approximation order of the ladder, in general, will not change. In contragt,df L,
while its Fourier transform does have the requisite zerosm#f 20, the smoothing may
simply result in anLo-function, and the ladder may then provide high approximation order
in L, (despite the fact that the,-approximation order provided by the initial ladder is
zero). One expects that the extension of the notion of approximation ord&f,te < 0
will remove the above artificial hump, and this is, indeed, the case.

(2) Retaining the same setup as in (1), it is also quite well-known tijgtahde, are two
compactly supported.»(R)-functions, and if the PSI stationary ladder generateabp,y
j = 1,2, provides approximation ordé; > 0, then the PSI stationary ladder generated
by ¢4 * ¢, provides (at a minimum) approximation ordar+ k2. One expects then that,
if ko = 0, the approximation order provided Iy * ¢, will be at leastk1. This, however,
is not the case, and there are examples when the aforementioned approximation order is
smaller thank1. This nuisance is fixed (in Section 3.4) via the introduction of negative
approximation orders.
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(3) Let us consider now the case of local stationary FSI laddeis,inn this case
ST = SL(Ly), with @:={¢y, ..., ¢,} C La(R?) compactly supported, and with! =
S1(./h), 0 < h < 1. A cornerstone in the analysis of the approximation order of such
ladders is the existence of a superfunction, i.e., a compactly supported fugictios*
whose associated local stationary PSI ladder already provides the same approximation or-
der as the original FSI ladder (cf. Section 4.2). The existence of such a superfunction is
proved in[4]. However, the Fourier transform of the superfunctjpmay vanish at the ori-
gin, a property that denies us the existence of effective numerical approximation schemes
from its associated ladder (we refer to such superfunctions as “bad[3],Ithis prob-
lem is overcome, but at the price of imposing an additional condition on the v@dfits
Gramian should be invertible at the origin; see Sectidifor a complete discussion). At
the outset of the current venture, we observed that the condition assunfteldisnnot
necessary for the existence of a “good” superfunction (i.e., a superfungtfonwhich
¥ (0) # 0). Unfortunately, a good superfunction may not always exist: in Sedti®mwe
construct an FSI vector (witth = r = 2) for which all the compactly supported superfunc-
tions are bad, dashing thereby our hope that a good superfunction may be proved to exist
in general.

(4) Let S be a ladder as in (3), but assume, in addition, 1‘i’1"a§;=S(}j is refinable, i.e.,
that$2 ¢ S1. It is then known (see, e.q28,12,33]for the PSI case ani®3] for the FSI
case) that thd.,-approximation orders provided by the ladder are bounded below by the
smoothness ob: if & C W§([R?d), then the ladder provides approximation oréef 1 or
higher. Moreover33] proves (ford = 1, and under some mild conditions @for d > 1)
that approximation order + 1 is implied by the mere existence of a nonzero funcfion
ins1n W§([R{d). However, all these results assume more than the smoothntasathe
refinability of S*: they require in addition the entire vectbtto lie in L,. The removal of this
condition (Section 4.9) leads to a conclusion that says, essentially, tisatid@rovide some
approximation order, it should contain one nonzero function of corresponding smoothness,
and nothing else.

(5) Our final example still deals with refinable ladders. One way to obtain a refinable
spaceSg is to select am x r matrix P whose entries are trigonometric polynomials and to
seek a compactly supported vector-valued functiothat solves the refinement equation
®(2.) = PP. A major goal in this direction is to reveal the approximation order of the
stationary ladder generated Wyin terms of properties dP (see[14,18,5]). The ultimate
known result in this directiorf5], requires a regularity condition chthat necessarily fails
once the above refinement equation has (in a nontrivial way) more than one solution. Thus,
there is no theory at present that deals with the approximation orders of refinable vectors,
once the refinement equation has multiple solutions. Section 5 deals with the approximation
order of stationary refinable ladders and provides a novel theory for the case when multiple
solutions to the same refinement equation exist.

1.3. Layout of this article

In the introductory Sectior?, we define the notions of shift-invariance and approxi-
mation order and make several basic observations that will be extensively used in the
sequel.
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Section3 is devoted to PSI ladders. The section begins with a summary of the known
characterization of the,-approximation orders provided by PSI stationary and nonstation-
ary ladders. These results are then extended to general Spacése end of Sectiol.1)
and connected with the notion of the Strang—Fix conditions (Se8t@&nand polynomial
reproduction (SectioB3.5). The results from Sectidh2 are in turn used in Sectich3to
analyze the dependence of the approximation order notion on the vafja.ef, on the
space where the error is measured. The issue of negative approximation orders is discussed
in Section3.4.

FSI ladders are considered in Sectibnlt begins, analogously to Secti@ with a
summary on thd.p-approximation orders of FSI spaces and with the extension of these
results to the setting of Sobolev spaces. This takes up Secfio§ectiont.2focuses on the
notion of a superfunction, which is instrumental in the reduction of the FSI case to the PSI
case. This notion is further used in Sectibdto understand polynomial reproduction from
FSI spaces and in Sectidn3to establish the consistency of the notion of approximation
order as we operate in different Sobolev spaces. However, not all superfunctions are equally
useful, asis made clear in SectighSand4.8. Regardless of whether “good" superfunctions
exist in the underlying FSI space, there is an alternative method proposed in Sk6tion
that can always be used to estimate approximation orders. The usefulness of that alternative
approach is demonstrated by an example in SedtiénSectiort.9is devoted to refinable
FSI spaces. It shows that the approximation order of stationary refinable FSI spaces is
bounded below by (a weak variant of) the decay rate of the Fourier transform of any
(nonzero) function in the space.

In Section5, applications of the theory from the preceding sections to multiple solutions
to arefinement equation are developed. We start by discussing, in Sedtjdhe structure
of the solutions space to a refinement question. In Se&i@nwe introduce the notion
of coherent approximation orders, which bundles together different solutions to the same
refinement equation. In SectiérB, the notion of coherent approximation order is associated
with a corresponding (novel) notion of universal supervectors; those lead to a uniform way of
constructing superfunctions in all the FSI spaces that are generated by the various solutions
to the given refinement equation.

2. Sl ladders: the prelude

We start our analysis with a few elementary, yet very useful, observations concerning the
interplay between approximation orderstj(Rd) on the one hand, and it (R?) on the
other hand.

As mentioned before, the symbW(§ (RY) denotes th&obolev space of smoothness k.
Note also the isometry
\

T La® > WER : £ > (@+1-72F) 1)

Recall that the Sobolev spaces are ordered by embeddifig> W, wheneves >1.



102 O. Holtz, A. Ron / Journal of Approximation Theory 132 (2005) 97-148
2.1. Shift-invariance

The notion of shift-invariance is valid in any function sp&oghose elements are defined
on R?, and is certainly not specific tW%([REd). Given such a spade, we consider now
Sl spaces that are invariant undetegertranslations; thus, we refer to a closed subspace
S C F asshift-invariantif Sis invariant under multi-integer shifts

seS=s(-—a) €S, ae 74

In agreement with the definitions of PSI and FSI laddeRSaspaces; is generated by
a single functionp € F as the closure of

spanig(- — o) : o € 7]

in the topology of, while aFSI spacesy is the closure op_ 5 S, With @ afinite subset
of F.

It is known that an FSI subspacebﬁ(l]%d) can be characterized on the Fourier domain
as follows:

Result 2(de Boor et al[4]). For @ C Lo(RY),

So(Lo(RY) =(f € Lo(RY) : F = t*®, t measurable, t(- + o) = 1,
all o e 2r7%). 2)

That s, the Fourier transform of an elementSgf(L>) is the inner product of two vector-
valued functions: the vectar(whose entries are measurable ane2riodic but otherwise
arbitrary), and the vectab. Note that we tacitly assume that the entries afe indexed by
® (or by the same index set that is used to indgx

Since the operatorg commute with translations, one easily checks that

So(W3) = J_sSa(L2), 3

which, together with Resug, leads to the following:

Corollary 3. For @ c W3 (R?),
Se(W3)={f € WZS(R") : f: @, T measurable, (- + o) =r1,
all o e 2rz9). (4)

2.2. Approximation orders

The basic idea leading to the notion of approximation order is very simple. It is the
heuristic understanding that increasing the density of translations used to define an Sl space
may improve their approximation “power”. At the same time, for numerical reasons (and
also for deeper theoretical reasons), one would, almost always, change the generator(s) of
the S| space when switching frost to §”, h < 1: the new generators should be more
localized, and one way, sometime adequate sometime not, to modify the generators is by
dilation (see the definition of a stationary ladder in Section 1.2).
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The following, simple but important, result connects the approximation orders of Sl
ladders inL to the analogous approximation ordersit:

Proposition 4. The ladderS = (§" = Sh(Wg))h provides approximation order k i3
if and only if (J;$"),, provides approximation ordet—s in L, where J; is defined as
in (1).

Proof. Jsisanisometry fronW§ to Wé“s as well as fronW; to Lo. Thus, if J;S provides
approximationk — s in L then, for everyf € Wé‘,

dist, (f. $") = disto(Js f. JsS") 1, SCH s fllyyss = CH 1L f g

HenceS provides approximation ordee in W5. The converse is proved in the same
manner. [

As already indicated before, the two most important cases of Sl ladders are

e PSI: eachs” is anh-dilate of some PSI space, .6 = S, (-/h); a PSI ladder may
be stationary or nonstationary depending on whether or not the gengratdrs” is
independent offi.

e FSI: eachs” is anh-dilate of some FSI spack, ; an FSI ladder, just like a PSI ladder,
may be stationary or nonstationary.

Nonstationary FSI ladders are broad enough to cover almost all situations of interest in
applications. Thus it is of primary importance to be able to characterize the approximation
orders provided by such ladders. It turns out that nonstationary ladders are useful not only
on their own, but also as a tool for analyzing stationary ladders.

Corollary 5. An FSlladder(s”": _Sfp,l( / h)), provides approximation order k iw; if and

only ifthe FSI laddet Sy, (-/h))n, ¥h:=(1+ |-/ h|?)*/2®,, provides approximation order
k—sin L.

Proof. In view of Proposition4, we only need to identify.J;S")(h- ) as Sy, with ¥,
defined above. Now, by Corolla3, f € S@h(Wz) iff feW; andf = 7*®y, 7 being
2n-periodic. Thus,f € S" iff f € w3 andf = r*cbh(h) with © 2n/ h-periodic. Thus
f e JS"iff fe Lo and
F=a+1-7200,0).
Dilating the last equation, we obtain thate (J;S")(h-) iff f € L, and
F=@+1-/h®Prd,

for a 2r-periodic z. By Result 2, this last condition is equivalent tb being in
Sy, (L2). O

Note that the ladder associated w(tH;,);, in the above result is nonstationary even when
we assume the original one to be stationary, i.e., when we aséyn@ be independent
of h.
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3. PSI ladders

We start our study of PSl ladders by recalling the characterization dbtHagproximation
order of these spaces. We then extend the result to the SobolewBhaliee general resultis
then connected with the notions of the Strang—Fix conditions and polynomial reproduction.
In turn, those latter notions allow us to understand the dependence of the approximation
order notion on the value d, i.e., on the space where the error is measured.

3.1. Approximation orders of PSI ladders

Note that the first part of the next result is not entirely a special case of the second part
(although it can be derived from it with ease).

Result 6(de Boor et al[3, Theorems 1.6 and 4.3]). IThe stationary PSI ladde§ =
(Sh:=S"(L2)), with 8" = S,(-/h), ¢ € Lo(R?), provides approximation order k if and
only if there exists a neighborhodglof 0 such that

(9. 91° 1
[}, p] |- 1%
Here [, $li= Y, cpnpi 10C + D)2, [§. P10= 3, o p010 19C + )2
2.The nonstationary PSI laddér = (S":=5"(L2)), with §" = S, (-/h), §;, € L2(RY),

provides approximation order k if and only fir somehy > 0 and some neighborhoad
of 0, the collection of functions

(D). §,1° 1
[th’ ¢h] (| . |2+h2)k’

€ Loo(Q).

O0<h < ho,

lies in Lo () and is bounded there.

Combining Propositiod and Results, we obtain the analogous result for Sobolev
spaces.

Theorem 7. Lets € R andk > s. Assume also that k is nonnegative.

1. The stationary PSI ladde$ = (S":=S"(W3)), with S" = S;(-/h), ¢ € W3, provides
approximation order k if and only if there exists a neighborhébdf 0 such that

1
:m T € Loo(Q). (%)

Here[d. lii= Y, ozt 1C+ D +212, [h. P1%= Y, pnino | B¢ +0) 2] +a?.
2. The nonstationary PSI ladde® = (S":=S"(W3)), with $" = Sy (-/h), ¢;, € W3,
provides approximation order k if and only fr someig > 0 and some neighborhood
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Q of 0, the collection of functions

[@»@]? 1
(ps Pplsn (|- 12+ hDE=ST
liesin L, () and is bounded therdﬁere,[ah, @]S,h;:[ah, ah]g + |$h|2(| 24 h2)s,

O<h<hg (6)

Proof. The second part of the current theorem follows from the second part of emdt
the PSI case of Corollary. Together, these two results yield the requisite characterization,
butwith [¢;,. ¢,,1° replaced Y, conz\0 ), -+ [2(|- o2+ h2)* . However, for # 0,
we can replace| - +a|% + h2)* by its equivalent expressidn +a|%.

It remains to show that in the stationary case, i.e., whee= ¢ for all h, (6) is equivalent
to (5). The fact that the form@mpliesthe latter is obvious (one should simply take> 0
in (6) and invoke the uniform boundedness of the collection of functions that appears there).
For the converse, we observe that (wikfgn=¢ for all h) the uniform boundedness of the
functions in (6) is equivalent to the validity of the inequalities

(9. P10 _ (-7 4+
|$|2 = c— (|- |2 + hZ)k—s

ae.,

for some constant > 0. Moreover, since we assurhes > 0, we can forcg|-|2+h2)k— <
¢ by makingh small enough and changirfgjif necessary. This leaves us with

[¢ 10
|p12
as the requisite boundedness. This is definitely implied by (5), as the left-hand side in the
display above is independentiofind sincec >0. [
Remark on notatianFor brevity, we will use in the sequel the expressiong(W¥y)
provides approximation ordds” and “¢ provides approximation ordérin W5" to mean
that thestationaryladder generated by, (W5) provides approximation ordérin W5.

LIS Lo P+rdr ae

3.2. Strang—Fix conditions

Given¢ € Wg(Rd), andk > 0, one says thap satisfies the Strang—F(SF) condition
of order k[38], if 5 has a zero of orddt at each point € 27Z%\0. It is well known that
the Ly-approximation order of a stationary PSI ladder is closely related to the order of the
SF condition satisfied by the generagpof the ladder. To be precise, a full characterization
requires a nhondegeneracy conditiongpat the origin. First, let us cite the,-result.

Result 8(de Boor et al[3, Theorems 1.14, 5.14])Assume tha® < #; < |q§| <1y < 00
a.e. on some neighborhod?iof the origin.Let A:=Q + 277\0. If qS € W2 (A) for some
p > k+d/2,thenS,(L2) provides approximation order ¢n L>) if and only if ¢ satisfies
the SF conditions of order ke., near the origin

$C+0l=0(-15 forall «e277\0. )
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Here WZ’J(A) is the local version owg(ﬂ%d); see[l, Chapter 7]. For our purposes, it is
only important that the norm oWZp(A) has a subadditivity property, i.e.,

2 2
D1y < CONSHLF 10 ®)
o

and that the Sobolev embedding theorem for such spaces still holds, in particular, that the
bounded (compact) embedding
W+ Q) = WE (o + Q) (9)

is valid. Note that the conditio@ € sz(A) is weaker than the more traditional decay
condition on¢

lpl = O(-|75797%), &> 0,

which implies global smoothness Ef
We now show that the SF conditions also characterize approximation power in a Sobolev
space.

Theorem 9. Letk>0,s < k, ¢ € W5. Suppose thafor somern,, 1, > 0 and for some
ball Q centered at the origin,

111<|$|<r/2 aeon Q, (10)
I1Phia= 2 |ﬁ|2s7:r|?\agxk ID7I (g < o0 (11)
pe2nz\0

where A denotes the s&+ 277%\0 and D? denotes the monomial derivative of order
y € 74, normalized byy!. ThenS, (W3) provides approximation order n W5) if and
only if (7) holds.

Proof. Set
R=[-172 3" [oC+PP | +p>. (12)

pe2n79\0
Supposep provides approximation ordérin W5. Then (5) holds by Theorei, or equiv-
alently, a.e. onf2,
—~——— =0( - %)
|2+ R

Sincek > s, andg is bounded 012, we conclude that, around the origit,= O (|- [2%~2).
This readily implies (7).
Now suppose) satisfies (7). WittR as above, we invoke (11) to conclude that

IR <Cl-*2NlIZ 4 = O - 1%7%).
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However, the left-hand sidé1, , of (5) equals
|.|2-2%p
P2+ R
We have just argued that the numerator in this expression is bounded. The denominator of

the expression is bounded away from zero thanks to (10). This implies(®).
Note that condition (11) was required only for the “if” implication in the above result.

Corollary 10. In the notation of Theorer, let p > k + d/2 and letA:=Q + 277%\0.

Then the conclusions of Theor@memain valid when we replace conditighl) by:

(i) for s <O0,the condition thath € W5 (A).

(i) fors>0,the condition thatl + | - [2)?/?¢ € W5(R?), or the stronger condition that
¢ eWsandp = O(| - |7*97%),¢ > 0,at co.

Note that the first condition in (ii) above implies, wheneyex 0, that$ € Wz"(Rd),
hence is stronger than the condition assumed in (i).

Proof. Itis clearly sufficient to prove that each of the conditions in (i) and (ii) implies (11).
(): Using (9), together with the fact that the séfis+ Q) are all translates d&®, the Sobolev
embedding theorem applies to yield that, fag 0,

2 25 1 112 T2
19124<C1 D0 BP0 <C2 Do 19130015
pe2rn79\0 pe2n79\0

The right-hand side in the above is bounded, thank8)ohbly a constant multiple of
||¢||§Vf,(A). Hence condition (11) is satisfied.
2

(ii): The second conditionin (ii) clearly implies the first one. Now assume the first condition
in (ii), i.e., that f:=(1+ | - |?)?/2¢) € W5. Thenf is locally in L, and

Y IBZUAIpra0) SCIf Iy < oo
pe2rn79\0

However, ||$”W§’(/)’+Q) <C||]‘\||L2(/;+ZQ), and the argument in the proof of (i) then
applies toyield (11). O

3.3. Approximation orders are independent of the underlyiigspace

We are now in a position to observe that the definitions of approximation order, if made
with respect to different Sobolev spaces, are consistent in the following sense.

Proposition 11. If S;(W5) provides approximation order>0, k > s, thenS,(W5) pro-
vides the same approximation order for anys.

Proof. First note thatp is an element of¥; whenever <s, sinceW; is embedded iW}.
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Now note that, by Theorem, ¢ provides approximation ordéif and only if (5) holds.
The left-hand sideV4; , of (5) satisfies

(1= Mol PE) D7 10+ BIP+B2 = My 112 . (13)

pe2rn7\0

Since||My 1L, (@) < const, 5, the set can be assumed to be small enough so that, e.g.,

1— Myl 59>1/2  ae.on Q

Then
S OUBCHPPHBES D DG+ PP +BIZ <2My D .
pe2n79\0 pe2n79\0

This implies
My < Y peanziyo lOC + PP +BI* <My,

P12 - |2
Thus, S provides approximation ordéralso inWw;. [

Proposition11 shows that) provides approximation order on the whole half-lifi&} :
t <s} of Sobolev spaces once it does so in the spige

Let us now show that, under the regularity assumptions already used in Théptieen
converse also holds.

Theorem 12. Lett < s < k, k>0. Suppose thap € W; and that it satisfieg10)—(11)
(with respect to s)ThenS,, (W;) provides approximation order k iﬂ‘d)(wé) provides that
same approximation order.

Proof. The “only if” implication was proved in Propositiofl without appealing to
(10)—(12).

We prove the “if” assertion as follows. First, singegprovides approximation ordérin
W}, while satisfying (10), it must satisfy the SF conditions of orkléwe do not need (11)
for that part), by virtue of Theore®. Then, onceb satisfies the SF conditions of order
the facts that it belongs tW; and satisfies (10)—(11) imply, again by Theor@pnthat it
provides approximation ordérin W3. [
Remark. As pointed out to us by a referee, it will be interesting to know whether one can
use thesameapproximation map to realize the aforementioned approximation orders in the
different Sobolev spaces. Our results in this section fall short of proving it, but it is very
likely to be true.

3.4. Negative approximation orders
Whenwould it make sense to have a Sl space that prowietgetiveapproximation order?

Suppose we form a convolution of two compactly supported distributiong; (0) # 0,
i =1,2. If each¢; provides a positive approximation order> 0, then their convolution
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Y provides approximation ordef + k2. This is to be expected if one assumes that the SF
conditions are equivalent to approximation power (WhICh is almost true): x/thenqﬁldyz
satisfies the SF conditions of ordar+ k2 whenever eackb, satisfies the SF conditions of
orderk;. An example of a rigorous statement in this direction is as follows:

Proposition 13. Let¢, € W', i = 1,2, be nondegenerate compactly supported distribu-

tions,i.e., ¢;(0) # 0, that provide approximation ordets > 0, k; > s;, i = 1,2 in their
respective space¥heny:=¢; * ¢, provides approximation ordér + k2 in W”“2

Proof. First observe thay € W52, Indeed,
W2 srve SN2+ 1 22l llldal A+ 1 12 Plloollball sl Pall o (14)
2

Since thep;'s are compactly supported, their Fourier transforms are entire functions. More-
over, the product$ (1+]-1%%/2,i = 1,2, areinLy, and, therefore, their inverse transforms
are inLy, too. Those inverse transforms are the result of applying a singular convolution
operator tog. Since the convolutor decays rapidly&t, and sincep is compactly sup-
ported, the result decays rapldlymi Altogether, we conclude thap; (1 + | - |2)%/?) is
in L1, and consequently ea@‘h(1+ | -1%)%/2 must tend to zero at infinity. Therefore their
Loo-norms must be finite. So, the right-hand side of (14) is finite, henisan W+,

Now, since we assumg; to provide approximation ordds, and sincéﬁi is bounded
around the origin, then (cf. the first part in the proof of Theo@m

(¢ i10 = 0(- 1),  i=12
where we recall the notatida, ¢1%:=[g, g1 — |g|?| - | from Theoren¥. But

[l// ‘ﬁ Y1+Y2\[¢1’ ¢l €1[¢2’ ¢2 §2° (15)

hence
[lﬂ lrb]s1+v2 =0( - |2k1+2k2)'

Invoking the fact tha@(O) # 0, we finally conclude that

W w]s1+sz —0(- |2(k1+k2) 2(A1+62))

[W lp]sl—i-sz

This, in view of Theoren?, finishes the proof. [J

Now, what if, upon convolving a given distributiapy with another distributiorp, one
discovers that the approximation order¢f « ¢, is smaller than that of;? Then it is
natural to assign a negative approximation order to the distribgtjoit makes little sense
to define the notion of negative approximation order in terms of the ability to approximate
functions. We choose, instead, the following technical definition, which is consistent with
the discussion so far, as well as with the argument used in the proof of our last result.
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Definition. Lets < k<0, and letp ¢ W;. We say that the (stationary ladder generated by)
¢ provides approximation ordér(in Wy) if, for some neighborhoo of the origin,
(6. 00 1
S:ZA—/\S ——5- €L (Q)
M=, TAm b

Note that the above definition is consistent with the ¢ase0. In this case, thdefinition
of approximation order is different, but the characterization provided in (5) of Thedrem
is exactly in the same terms.

Equipped with this last definition, we can extend PropositiBas follows:

Proposition 14. Let ¢; € ng’([R{d),i = 1,2, provide approximation ordek; > s; in
Wy (RY), i = 1,2.If the convolution product := ¢4 * ¢, lies in Wy ™2(R9), then it
provides approximation ordet; + k» there.

Proof. Sincek; > s; fori = 1,2, it follows directly from the extended definition of
approximation order that

b.. $.1°

Eﬁﬁ&:OﬂP%, i=12

;12
7 70
These two estimates, together with inequality (15), implyﬂﬁ%]s‘;ﬂ = 0(] - |Fat2ke),
hence
7 710 7 710

_ [lpv lp]&1+i% _ < ilpv lp]s1+sz — 0(| . |2k1+2k2—2S1—2S2)‘

W21 120522 4 [ 0y, W] (222
This completes the proof.[]
Corollary 15. Let ¢; € Wé"(IRd), i = 1,2, be compactly supported distributions that
provide approximation order > s; in ng(Rd), i = 1,2.Then¢, * ¢, provides approx-

imation orderky + k in W2 (RY).

Proof. This fact follows from Propositioi4, since we know already from the proof of
Proposition13 that the convolution of two compactly supported distributionW@ﬁ(Rd),

i =1,2, liesinWy ™ 2(RY). O

Remark. In the rest of the paper, we only consider, by default, genergtafsstationary
ladders that provide approximation order no smaller than 0. Note that this is the case when
¢ is of compact support and satisfigg0) # 0.

3.5. Polynomial reproduction
We restrict our attention in this subsection to local stationary PSI ladders, and focus on

the properties of the compactly supported generatofthe underlying ladder. To be sure,
all the results here extend, almost verbatim, to generafiorsth sufficient decay ato,
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for example¢| = O(| - |7¥~9~%) at oo, with k the investigated approximation order and
e > 0.

The theory of approximation orders of local stationary PSI ladders focuses, and rightly
S0, on the satisfaction of the SF conditions (cf. Sec8@) and also the application of those
conditions in Sectio.3). Under the compact support assumptiompothe SF conditions
are known to be equivalent to the polynomial reproduction property, the latter being the
subject of the current subsectidn.

The connection between the SF conditions and polynomial reproduction is classically
known, and can be dated back to Schoenberg (¥, [37]), and Strang and F§88]. See also
[2]. Our approach here followg]. Altogether, the results of this subsection are included
for completeness, especially since the polynomial reproduction property in the PSI case is
key to the understanding of the more complicated polynomial reproduction property of FSI
spaces (Sectiof.4), as well as the sum rules of refinable FSI spaces (Seatn

Suppose thap is compactly supported. Let us first attempt to connect the approximation
orders provided by its stationary PSI ladder to the SF conditions. To this end, we would
like to invoke Theorend. This theorem requires the satisfaction of (10) and (11). Condition
(11) is satisfied once e W3, as (i) of Corollary10 shows. The fact that a compactly
supported distribution belongs to soig is well known, and follows from the fact that
it is necessarily of finite order (as a distribution). As to (10), siﬁcis continuous, this
condition is presently equivalent to the nondegeneracy requirement

o~

0 #0.
Thus we obtain the following result:
Corollary 16. Let ¢ be a compactly supported distributioand assume thaAp(O) # 0.

Then there exists € R such that¢ € W;. Moreover,the following conditions are then
equivalentfor any givenk > 0:

() ¢ satisfies the SF conditions of order k.
(i) The stationary PSI ladder generated dyprovides approximation order fin W5).
Now, recall that reproducing polynomials of total degree less kraeans that
d) */ H<k c H<k~
The symbok’ denotes theemi-discrete convolution
g i f > Y gl = DG, (16)
jez?
IT:=I1(RY) is the space of alii-variate polynomials, anl _x:={p € IT : degp < k}.

3 Prior to the publication of3,8], approximation orders of stationary PS| ladders were usually derived directly
from the polynomial reproduction property, while the SF conditions were considered to be a technical way for the
verification of polynomial reproduction. However, as the discussion in this article clearly shows, the SF conditions
characterize the approximation orders of the ladder even when a slow decay of the gepeamders the
polynomial reproduction property meaningless.
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One way to connect the polynomial reproduction to the SF condition is via the following
variant of Poisson’s summation formu[85],

ox f= Z b x(eyf), ey:xr> g2y a7)

aeZ?

which is valid for every compactly supporteédnd everyC>°-functionf (the convergence of

the right-hand side seriesis inthe topology of tempered distributions). Now, for a polynomial
f, one easily verifies thap x (e_, f) = 0 iff ¢ has a zero of order deg + 1 ata. Thus,
once¢ satisfies the SF conditions of ordeiwe have thap ' f = ¢ = f forall f € I1_;.

This establishes the sufficiency of the SF conditions, sincalways mapsgI _; into itself.

On the other hand, ip +’ f is a polynomial of degree k, then (17) shows that

Y e (18)

ae74\(0}

is also a polynomial of degree k. This is possiblé7, Proof of (2.10) Lemmabnly if all
the summands in (18) vanish. In conclusigrsatisfies the SF conditions of ordeif and
only if

o' = ¢px, onlly.

Since, as we already saidll_; is an invariant subspace @fx (with or without the SF

conditions), we finally need only to guarantee tigat be injective on polynomials, or
equivalently, we need to assume thh&0) + 0. Indeed, the conditios(0) # O is necessary
and sufficient forp* to be an automorphism ofi _; (for any positive integek), and we

arrived at:

Theorem 17. Let ¢ be any compactly supported distribution W@I(\O) # 0,andletkbe a
positive integerTheng provides approximation order k in some Sobolev spages < k,
if and only if it reproduces polynomials of total degree less than k.

Remark. As alluded to before in a footnote, Theorei could also be proved directly,

avoiding the use of the SF conditions and constructing instead a quasi-intergolant
W5 — S(¢) such thatSp = p for any p € I1_; for a detailed discussion of this method
see[7, Section 4].

4. FSI ladders

We start this section, just like in the PSI case, by recalling the characterizationlof-the
approximation orders of FSI spaces and extending the result to the setting of Sobolev spaces.
We then focus in Sectioh2on the notion of a superfunction, which leads to the reduction of
the FSI case to the PSI case. Besides, this notion proves to be very helpful in understanding
polynomial reproduction from FSI spaces (see Seetidh In our setting oW, italso helps
to establish the consistency of the notion of approximation order as wesseg Section
4.3). However, not every superfunction can be used for these and/or for other purposes,
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and this brings one to the notions of “good” and “bad” superfunctions that are discussed in
Sectiord.5. We show, in Sectiof.8, that there exist FSI spaces that do not contain any good
superfunctions. Regardless of whether or not good superfunctions are around, an alternative
approach, which is presented in Sectb, can always be used to bound the approximation
order fromabove. The efficacy of this method is demonstrated in Sedtidnwhere we
recover the well-known example 6f1-cubics on a three-directional me$8]: this is an
example of a bivariate stationary local FSI ladder that, while reproducing all polynomials
in IT -4, fails to provide the “expected” approximation order 4. Finally, Secli@applies

the results obtained in this section to the case when the v@dtefinable: in establishes a
lower bound on the approximation order provideddin terms of the decay of the Fourier
transform of any nonzero function 8.

4.1. Characterization of approximation power

The first three results of this section form a summary of the known characterization of
approximation power valid if.2, while the rest constitutes the characterization in the more
general setting of.

Result 18(de Boor et al[5, Theorem 2.2]).The stationary FSI ladderS = (s":=
S (Lo)), with S* = S¢(-/h), @ C La(R%), provides approximation order k if and only if
there exists a neighborhodel of 0 such that

(1 Gz 1<1>)|1| € Loo(Q).

Here
Go= Y W+ 0P (+0)=(0.91), . (19)
ae2nZ? ’

Also, the expressiom};@ is taken to mean any solution to the equat@Ggt = . A
simple linear-algebraic argument shows that the latter equation i |s always solvable whether
or notG ¢ is invertible,since one of the rank-one terms(itB) is D"

Result 19(de Boor et al[5, Theorem 2.7]).An FSI nonstationary laddeS = (S"
:=S"(Ly)), with S" = Sg, (-/h), &, C La(R?), provides approximation order k if and
only if, for someip > 0 and some neighborhod@ of the origin,the collection of functions

1
(1 @h G‘pl ) (||2—hZ)k’ h < ho
lies in Lo, () and is bounded there.

We also require the following equivalent formulation of the last characterization, in which
we use the notation:

GO = Z 6( + 06)6*( +o0)=Gg¢p — 66* (20)
ae2nZ9\0
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Result 20(Another version of Resul9). The FSI nonstationary laddeS = (S":=
S"(Lp)), with 8" = Sg,(-/h), &, C La(RY), provides approximation order k if and
only if the collection of functioneMp, s 5 : 0 < h < ho), where

v*GY(w)v
N
(||2 + h2)k yecr v¥*Gg(w)v

Mpsp:o

is bounded in. . (£2) for some neighborhoof of the origin and somég > 0.

Using these results, one obtains the following characterization of approximation power
in Ws.
2

Theorem 21. 1. An FSI stationary ladde§ = (S":=S"(W3)), with " = S¢(-/h), ® C

W35, provides approximation order > 0 if and only if there exists a neighborho6lof 0
such that the function

v*GY (w)v

o) in belongs to L (£2). 21
Mo 0 1T T 5 Ga @ 9810 Loclé2) @)
Here
Gosi= Y B+ (-+m)-+ol>,
ae2nZ?
Ghi= > DA DD+ ol
ae2n7\0

2. An FSI nonstationary ladde$ = (S":=S"(W3)), with " = Sg,(-/h), &4 C W3,
provides approximation order > 0 if and only if there exists a neighborhod2lof 0 and
ho > 0 such that the collection of functioid4p s », : 0 < h < ho), with

* ~0
v qulhs,h(w)v

in ,
(lo]2 4+ h2)k=s 0" v* G, ()
is bounded InL (). (22)

Mo, s 0

Here,

Gapsn(@)i= Y Pp(@+0)®, (0 + 0o+ o + h?),
ae2nZ?
Y B+ 08, @+ Do+ o + b,
ae2nZ\0

0 .
G(ph’s’h(w) :

Proof. The proof is analogous to that of Theoré@min particular, part 2 of the current
theorem is a direct consequence of Re20land Propositiort.
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Now we use the result of part 2 to derive part 1. In the stationary dase; @ for all h,
so the left-hand side of (22) becomes

1
(|w|? 4 h2)k=s
g U Daezazino Y@ + )@@+ (| +al’ + 42 v
VY onzd P+ D)@ (@ + d)(|o + a2+ h2)S v

-A/’ff),s,h(w) =

Since the numerator of the infimum expression is bounded above and below by positive
multiples of v*G%Sv, the collection(Mp 5 ;) is bounded inL..(€2) if and only if the
collection of functions

v*Gg,J (w)v

W ey N —3 = = :
(lo|e + he)k=s v v*Gg (W) + v*P(@)P () (|| + h?)*v

(23)
is bounded inL.(£2). Sincek andk — s are nonnegative, for a fixadand a fixedw € Q
(assuming? is sufficiently small), the expression

1 v*Gg,’S (w)v
(ol + 72 126G (@) + v* (@D ) (@) (|0]2 + h2)sv

monotonically increases (as— 0) to

1 v*G?I),S(w)v

lw2k=9) v*G g (W)’

hence (23) monotonically increases to the functionin (21). Therefore, the collestipn,,)
is bounded if and only if (21) holds.]

Remark on notatioms inthe PSI case, we shall use in the sequel language such as “an FSI
spaceSq(W5) provides approximation ord&f and even ® C W provides approximation
orderk” and will mean by that the FSI stationary ladder generatedy;) provides
approximation ordek in W;.

The Ly-characterizations above (Result3-20) are connected to the notion of super-
functions. We will now discuss this notion, and extend it to the setting of Sobolev spaces.

4.2. Superfunctions

Let Sbe an Sl space, and I8t= (S":=S(-/h)) be the associated stationary ladder. A
functiong € S C Ly is asuperfunctiornn Sif the PSI stationary ladder it generates provides
the same approximation order as thatSqr, more precisely, o). For sure,L> in this
definition can be replaced by any Sobolev spége

The question of existence of superfunctions in FSI spaces can be answered in the affir-
mative using Theorerf1.

Theorem 22. Any FSI spac&e C Wg(IR{d) contains a superfunction.
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Proof. Let( be as in Theorer@1. For each fixedh € Q, there exists a vectagp(w) € C?
of (e.g., Euclidean) norm of 1 that minimizes the raﬂzﬁ:GgJ(w)v/v*G<p,s(w)v. Now

extendug to the cubg—n, 7)¢ in an arbitrary way, provided the norm is everywhere
equal to 1. Finally, extendy so defined to a2-periodic vector-valued function.

Now, suppose thap provides approximation ordér Then, in view of Theorergl, the
vectorug satisfies

V3G vo< const] - [#7 (v5GY, o + PP vl - %) ae.inQ
or, equivalently,

(1 - const] - [2*7)5GY, vo< const] - Zuidd vy ae.inQ.
By changing@ if needed (and using the fact thiat- s), we obtain that

USG%YSUQ<C| v PD " vo a.e.inQ

forsome constar@. This implies that, for almost every fixede 2, the smallest eigenvalue
of the measurable Hermitian matri(w): _(G0 —C|- |2k<15<1§ )(w) is nonpositive. By
Lemma 2.3.5 fronj34], we can define a map on Q such that (i) for almost every € Q,
w(w) is a normalized eigenvector &f (w) that corresponds to the minimal eigenvalue, and
(i) wis measurable of. Without loss, we assume that our originglcoincides withw

on Q. In particular,vg is now known to be measurable.

Let ¢ be the (scalar) distribution whose Fourier transform satuafl% vgqﬁ To show
that¢ is a superfunction fo§ g, we only need to verify that it belongs 8%, since it follows
d|rectly from the construction af that the spacs,, provides approximation ordér Since
qS = v0<I> we only need, in view of Corollar9 to show thatp € W;. This final result is a
simple consequence of the representat;bOﬂ vé@b using the facts thab C W3 and that
the entries obg are bounded. (I

This theorem extends the knowin-result. However, in thé »-case, a superfunction was
originally constructed as the orthogonal projectiéy: L, — S¢ of the sinc-function

d . .
sinc(x)::l_[ sin(@x @)

i1 7x (i)
The fact thatPg (sinc)is a superfunction follows from the general principle:

Result 23(de Boor et al[3]). Let S¢(L2) be an FSI space that provides approximation
order k1 >0, and letS,(L2) be a PSI space that provides approximation ordge: 0.
Then the PSI space generated by the orthogonal projed®igs on S¢ in Lo provides
approximation ordemin{k1, k2}.

If, in Result23 above, we choosg such thatko > k1, andS¢(L2) does not provide an
approximation order greater thap, then Pgg is a superfunction. It is easily checked that
the approximation order provided by the spdggc is infinite (i.e., exceeds any finitd,
hence the following corollary.
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Result 24(de Boor et al[3]). An FSl spaceSy(L2) provides the same approximation or-
der as the PSI space generated®y(sinc)in L.

To find theL,-projection on a FSI space of a functifrone solves Eq. (24).

Result 25(de Boor et al[3]). The La-projection Py(f) of f € Ly on an FSI spaceyp
satisfies

(Po(f)" =14 (24)
with 7 any solution of
Gotr = 2 7.

Here, 7 is a vector-valued functiofindexed by®) whose entries are measurable a2v
periodic, and the symbol[®, f] stands for ([¢, f])peca, Where [f,gl:=)", s
f(+2n0)8(- + 2m).

Remark. Results23-25are all corollaries to Theorem 3.3 [#].
The above results extend easily to Sobolev spaces. Indeed, RRSauttd24 require only
one assumption, viz.

PyPg = Pp,gPg, (25)

whereA denotes an arbitrary S| subspaceVd$, and Py, Py, Pp,, are the orthogonal
projectors fromW; onto A, Sg(W3), Sp,¢(W5), respectively.

Under this condition, the analysis frof3, Section 3]leading to Result23 and24 goes
through verbatim. Since th#&’;-version of (25) is a simple consequence of Iheversion
when combined with the identity;, 4 J; = J; P4 (whereAis an Sl subspace d¥; and
P, 4 the orthogonal projector onto the spagd in L), we obtain the following extension.

Theorem 26. Let S¢(W5) be an FSI space that provides approximation orkgk 0, and
let S, (W5) be a PSI space that provides approximation orkep 0. Sety:= Py g, With Pg
the orthogonal projection o3 onto S¢(W3). Then the stationary PSI ladder generated
by provides approximation ordenin{ky, k2}. Specificallyfor every f € W5 andh > 0,

dist; (f, S (W3)) < dist,(f. Sg(W3)) + 2dist (. Sy (W3)).

In particular, S¢(W5) provides the same approximation order as the PSI space generated
by Pg(sinc)in W3.

Superfunctions are obviously useful if one wishes to approximate functions from a given
Sl space S, for if a superfunctio is known explicitly, one can instead approximate
from the simpler spacs. In addition, it is already well established in tihe-theory that
superfunctions give rise to quasi-interpolants, i.e., bounded linear maps into the underlying
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Sl spaceSthat reproduce polynomials containedS(see, e.g[2,7]). Superfunctions were
also used if3,5] as purely theoretical tools.

The natural expectation is that superfunctions play similar roles in the setting of Sobolev
spaces. That turns out to be the case. In particular, the superfunction method allows us to
lift painlessly various results from the PSI setup to the FSI one. This includes the discussion
concerning the consistency of the definitions of approximation orders in different Sobolev
spaces, which we embark on in the next subsection.

4.3. Approximation orders are independent of the underlyiigspace

Proposition 27. If an FSI spaceSe(W5) provides approximation order>0, k > s, then
So(W3) does so for any<s.

Proof. Assuming thatSe(W,) provides approximation ordes, Theorem22 ascertains
that S¢(W3) contains a PSI subspaég (W) that already provides approximation order
k. SinceSa(W3) D Sa(Ws3) (as easily follows from Corollarg), ¢ € S¢(W3), too. By
Proposition11, S¢(W£) then provides approximation ord&rin Wj, thereforeSqe(W5)
provides approximation order (at leakin W5. O

Similarly to the PSI case, a converse also holds under some regularity assumptions on
the superfunction.

Proposition 28. Letk > s > 7,k >0.Suppose, & C W;. Suppose thafs(W}) provides
approximation order k i}, and that¢ € S¢(W)) is a corresponding superfunctiot..¢h
satisfieg10)—(11),thenSq(W3) provides approximation order k i3, too.

Proof. We apply Theoreri2to the functionp to show thats s (W) provides approximation
orderk, which implies thatS (W) also provides approximation order (at ledst) [

The theorem highlights a central point: it is useful to know that an FSI space con-
tains a “good” superfunction. In the current context “good” in interpreted as “satisfying
(10)—(11)". We will come back to this issue later, but first we show how the superfunction
method reduces the polynomial reproduction issue in the FSI setup back to the simpler PSI
setup.

4.4. Polynomial reproduction

Let @ be a vector of compactly supported elementiys € R. Suppose thab provides
approximation ordek > 0 in W3. Let us assume, further, th& (W) contains agood
superfunctiony is the sense that:

1. ¥(0) # 0, and
2.y is afinite linear combination of the shifts ab (hence, in particular, is compactly
supported).

We note that the current notion of “good” is stronger (i.e., implies) the one that was discussed
at the end of the last subsection (as the argument in Sex#®hows).



O. Holtz, A. Ron / Journal of Approximation Theory 132 (2005) 97-148 119

By our assumptions her& — v*®, with v a vector otrigonometric polynomials. There-
fore, with (a4) se the Fourier coefficients of the entrieswfwe have the representation

V= Z ¢ ay
Pped@
and eacla 7% — Cisfinitely supported. Here{ is the semi-discrete convolution, (16).

Next, sincey(0) # 0, andSy, (W5) provides approximation ordés; we conclude from
Theoreml7 thaty«’ mapslI . onto itself. Writingy+’ in terms of®, we obtain

U = dag) K f= ¢+ (ay+ f).
ped ped

The above representation leads to several conclusions that we summarize in our next result:

Corollary 29. Let @ be a compactly supported vector that provides approximation order
k > 0in W3, and assume thais (W) contains a good superfunction in the above sense.
Then there exist finitely supported sequencgs 74 — C, ¢ € @ such thatfor every

f e H<k1

Tfi= Z o+ (ag* f)
Pped

is apolynomialHere,a* f denotes the discrete convolutiomgfandﬁzd . The polynomial
Tf is identical to the result of the following continuous convolution:

Yobxlagx =Y > agi)¢* )~ ). (26)

e e jez?

Moreover,the maka:=T|n<k is an automorphism.

There are several immediate conclusions that can be derived directly from the above
corollary. For example, sincg, can be extended to a convolution operator, it commutes
with differentiation in the sense th&’T = T D’ for everyy € Z¢,, and commutes also
with translations.

A simpler consequence is as follows: sirfgeis an automorphism, every monomiaf,
lo| < k, lies in its range. (Here, the symb@F stands for the normalized monomial

0%:x > (x)*:=x*/al.

We also use in the sequBl* for thenormalizedmonomial derivative.) Thus, the following
is true:

Corollary 30. Let @ be as in Corollary29. Then there exist ponnomia{gm)xezd+ such
that, for |«| < k,

Y b (agxgn) = 0%
ded
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The result shows that evey* is writable asz(b ¢ *" f4.4, for suitable polynomials
(f.4)¢- However, the result shows more: it decomposes ggchinto ay, * g4, With the
first factor independent of (and finitely supported), and the second independet(ehd
a polynomial).

The reader might wonder how realistic the assumption about the existence of a good
superfunction is. We discuss that issue in this section as well as in Section 5. A sufficient
condition for the existence of a good superfunction as above is the invertibility, in a suitable
sense, of the Gramia@ig ; around the origin. We also note that our results here recover
the results of11, Section 3]cf. also[9,10]). The underlying assumption ihl] is that the
shifts of the distributiong € @ are linearly independent, a condition that is significantly
stronger than the Gramian invertibility that we have alluded to above. At the same time, our
derivation here is simpler due to the superfunction approach.

Next, one might also wonder how to invert the operdtgare., how to compute the above
polynomials(g,),. That inversion is the key for the so-called quasi-interpolation approach,
and is discussed in detail [@,7] (in the PSI context; our superfunction approach already
reduced the problem to that setup). At base, we seek a simple linear fungtisneth that
wx inverts onlT - either the convolutio or the mapf — f * .

Among the various methods, we describe a general recursive approagh3se#1]).

To this end, we need first to present this approach in the nondegenerate PSI case, i.e., when
the (single) generatap satisfies the conditiory(0) # 0. The superfunction method will
allow us then to lift the result to the FSI setup.

Proposition 31. Lety be a compactly supported distribution W%O) = 1that provides
approximation order k in som#3, s € R. Define the polynomialg,, « € 7% |a| < k,
by the recurrence

gr=0" =Y cla— P gp, (27)
p<a

where
c():= « 0)(0) = (Y x 0)(O0) = (07 ¥ Y)(0), yeZ%, [l <k.
Then these polynomials satisfy
V' =yYxgy, ol <k (28)

Note that for the expression’ " = Z <74 — D"Y(j) to make sens¢ needs to
be continuous. The other two representauons(qzj are valid for an arbitrary compactly
supported distributiory.

Proof. By Theoreml7,y*’ reproduces all polynomials of degreek, and hence (cf. e.g.,

[71)
Y O =y x 0= 0"y, YaueZ4, |of <k

Thus,c(x) is well-defined.
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Now, givenx as above, it is elementary that (singe: ()° = @(O) =1)
Y0 = > Wx0"NH0o 0 =0+ > c@—poP.
IBI< 1BlI<lal

However, withg, as in (27), we obtain (by convolving, with iy, assuming by induction
thaty * gg = OF for || < o, and using the last identity) that

Yrge=yx 0" = Y cla—-pof=0" O (29)
|Bl<lel

Using this proposition with respect to the superfunctjos: Zd)e(p ¢+ ay, we obtain
the following:

Theorem 32. Under the assumptions of Corolla?®,the polynomialgg,) from Corollary
30 satisfy the following recurrence relation:

ga=0"— Z c(oe—PB) gg, (30)
p<a
where
c()i=) e, ),
ped

while

e, 9= _ (¢ * 0 (ag(—J).

jezd

Here, ¢ * ()7 is continuous convolutiorwhile a, is the finitely supported sequence that
appears in Corollary30. Moreover,if each¢ € @ is continuousywe have the alternative
discrete convolution representation

(. y=( , xag*0f YO = Y () agk =) (k).

jkez?

Remark. Compare the last theorem with Theorem 11df].

4.5. Good and bad superfunctions

Every FSI space contains a superfunction. This positive statement can be turned negative:
the existence of a superfunction in a given FSI space tells us nothing about the structure of
the space. In contrast, Proposit®8, Corollary29and Theoren32 show that the existence
of “good” superfunctions does lead us to useful conclusions about the space and about the
given generating set. A particularly useful condition is that the Fourier transform of the
superfunction be bounded away from zero near the origin. This condition is important also
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from the numerical stability point of view. In view of the above, we say that a superfunction
 is nondegenerate, iff near O is bounded away from zero.

We note that the nondegeneracy itself falls short of classifying “good” superfunctions.
For example, it can be checked that theprojection of the sinc-function on an FSI space
S C Ly is always nondegenerate as longgwovides a positive approximation order (by
de Boor et al[5, Corollary 2.6]). However, the superfunctions obtained in this way may
prove to be of little use due to their slow decayat Thus, we require a complementary
property of a superfunction: we say that the superfunction hafirtibe span propertyf it
is in thefinite span of the shifts of the generating detSuch superfunctions are compactly
supported if® itself is. It is proved in[4] that every local FSI space ih, contains a
superfunction that satisfies the finite span property (witheing any compactly supported
generating set for the space).

We call a superfunctiogood, if it is nondegenerate and finitely spanned by the shifts of
®. Such superfunctions are needed for constructing quasi-interpolation schemes. Indeed,
the requirement appearing in Theor8ais exactly that the superfunctiaghbe good.

Corollary 3 shows that any function i8¢ (W5) is of the form(v*@V for some z-
periodic vector-valued function. Theorem21 adds that the vectar associated with a
superfunction satisfies

*GO

—U*Gw (|- 22

with k the approximation order of the FSI spatg(Ws;). The knownL2-theory of approx-
imation orders of FSI spaces offers then a recipe for constructing good superfunctions: first
solve the equatioiiv = @ around the origin (cf. Theore®5) and then approximate
by a trigonometric polynomial vectarsuch that — u has a zero of ordér at the origin.
This is possible whenever the Grami@nis k times continuously differentiable around
the origin andG(0) is invertible (sed5, Theorem 4.2]). Nexty —u = O(] - ¥y implies

VP — urd = o( -5, hence(u*di)v is a good superfunction.

OnceG(0) is not invertible, the notion of a “good” superfunction becomes more subtle.
Are we only interested in thexistenc®f a superfunctiony € S¢ such that) is “reasonably
local” andys(0) # 0, or do we also insist on simple ways to obtain that function from the
given generating seP? Our discussion and development focuses on the latter approach:
after all, the Sl space vento us in terms of the generating s&tand we would like then
the analysis to stay as close as possible to this set. Once we agree on that principle, it should
be clear that “very bad” generating sdtsare not going to yield good superfunctions: for
example, ifd is compactly supported an#l(0) = 0, there is no hope to get frodh in a
simple way a superfunctiofiwith 1(0) # 0. The ultimate question is how to define “good”
vectors®. Our suggestion is simple: these are the vectors that yield good superfunctions!

Our next results (in the next subsection) offer analysis of veckonghose Gramian is
singular. We show the utility of this analysis by providing a new proof to a famous example
of de Boor and Héllig concerning the approximation ordef fcubics on a three-direction
mesh. We then provide an example of a “seemingly good” vegtitrat cannot yield good
superfunctions.
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4.6. Estimating approximation orders when Gramians are singular

Theorem21 enables us, at least in principle, to determine the order of approximation
provided by a given (stationary or nonstationary) FSI ladder in any Sobolev space. But, as
we already saw in the»-case, such analysis is hard to carry out if the Grarnién® Go s
is singular at the origin. The problem is exacerbated by the fact that the ent6igs,ahay
be hard to compute.

Let us examine closely the source of the difficulty. o= 0, the computation of
approximation orders depends on estimating ratios of the form

v*G%
v*Gu

around the origin. Without loss, one can assume that the vedeorormalized pointwise. If

Gis continuous at 0 and invertible there, we can then dismiss the denominator, since it does
not affect the asymptotic behavior of the above expression. In contr@sg #ingular at the

origin, the denominator might affect the approximation order. The use of the verb “might”

is justified: roughly speaking, there is hope that the specific vectdnst minimize the
numerator are far enough from the kernet®). Whenever this is the case, the problem is
reduced to examining the behavior of the numerator only. The current subsection translates
the above discussion into rigorous analysis.

We first provide below a theorem that establishes an upper bound on the approximation
order of an FSI space. The upper bound does not require the invertibility of the associated
Gramian. To this end, we denote py,;,(A) the smallest eigenvalue of a positive-definite
Hermitian matrixA.

Theorem 33. Suppos@ C Loo(Q) for some neighborhoof of the origin.Given any set
TcC ZnZd\O, denote by (@, Z, s) the order of the zero that the scalar function

0 = pmin(A(w)),  A(w) = Za(w + ) B(w + ) o + o]
oael

has at the originThen the approximation order provided by the FSI spSgéW,) is no
larger thank(®, Z, s)/2.

Proof. Suppose thaf provides approximation orddrin W;. Then the characterization
from Theorem21 implies that, forvg : @ — vo(w) that minimizes (21) pointwise, the
expression

* ~0
vGg v 1

NE=T Mo.s

3G o sV |
is bounded in a neighborhodgl of the origin. Using the identity

2%—2 0 312 2%
(1= M| - 177G vg = Mo s|vg @7 - |
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and the fact that > s, we conclude that;G ¢ ;v is bounded above by a constant multiple
of [ug®|?| - |* (compare with the argument used in the proof of Proposttibn Thus,

* 0 * ~0 * ~0
ing 00V _ W%t o V00a,s%
= > - 85 7
v v*Gosv v3Go sy lug @2 - |2
*~0
v GQSv

> const inf

—25 * ~0
———>"— > const] - | inf v*Gg v.
= o
WI=1 [p* P2 - |25 pi=1 P

The last inequality uses the assumption as bounded around the origin. We conclude
then that, for som€ > 0 and a.e. around the origin,

* ~0
- v GQSU

2 0
1 m>c| 1T Pmin(G g )

But G%s — A is (pointwise) a nonnegative definite Hermitian matrix, hence, pointwise,

Pmin(G% )= prmin(A). The desired result then follows from Theor@h [0
As alluded to before, we know quite precisely when the above upper bound matches the
associated approximation order.

Theorem 34. Suppose?ls C Lo (£2) for some neighborhoof of the origin.Let vp be a
normalized eigenvector 613)“? associated with its minimal eigenval(ies.,for a.e.w € Q,

the pair (pmin(GY, (), vo(w)) is an eigenpair ofGY, (). If v ®| is bounded away
from zero almost everywhere @@, then the approximation order dfg(Ws) is exactly
k(®, 2n79\0, 5)/2.

Proof. One only needs to show that the approximation orde§qofs bounded below by
k(®, 2n7\0, 5)/2. But

inf U*G%,sv < USG%,SUO _ pmin(G%,s‘) < pmin(G%,s)

v v G v5Gosv0 (U] - |2 + pin(GS ) 0PI - (2

< const] - |72 pin(GY ).

Theorem21then yields the requisite lower bound]
4.7. Example: bivariat&1-cubics

The results of the last section raise two questions. The first is whether the upper bounds
provided in Theoren33 are useful, i.e., whether they can be applied to solve a nontrivial
problem. We provide in the current subsection an affirmative answer to this question.

The other, more fundamental question, is whether the setup of The¥enuniversal,

i.e., whether we caalwaysdispense with the denominator in the characterization provided
in Theorenm®1. This question is intimately related to the existence of good superfunctions. In
the next subsection we provide a (-n unfortunate) negative answer to that second question.

As said, we describe now an example where Theds8mpplies in a situation when
direct evaluation of the approximation order is quite complicated. We choose the notorious
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example of an FSI space that reproduces all polynomials of ogd&rbut provides only
approximation order 3. The example first appearfSJnA second, completely different,
proof of this result appears [B]. Our proof is thus the third one for this result.

Consider the following two bivariate compactly supported piecewise polynomial func-
tions whose Fourier transforms are given by

Gy PAZ M —wA e AT A e A=)
l | } 9

(wvw)?
Do, v) = Py (v, u),

wherew := u + v. These functions are known as the Fredrickson elements. ith
L2(R?) the 2-vector consisting of the above functions, the Grangignis invertible in a
punctured neighborhood of the origin. Hence it is still possible to compute enough coeffi-
cients in the Taylor expansion of-4 <I>*Gq§1<1'> to find the first nonvanishing nonconstant
term. This complicated analysis was carried oybij It shows that the first nonzero term
in that expansion is of order 6, $ provides approximation order 3.

We use here, instead, Theore38 to arrive at the same conclusion more easily. Let
7 ={(0, 2n), (2, 0)}. Then

Z 5((14, v) + oc)a((u, v) + )" = ¥i(u, v) Vi, v) + Pa(u, v) P5u, v)

el
+o((ul® +[v]%?), (31)
where
(1— e_i”)(l . e‘_iv)(l . e—i(z4+v)) B 727t+niu+?niv2+i)uzv/2+iv2/2 —
— u(v+2mn
Pa(u, v) = + v+ 21)2 2n—miu-tiuv/2+iv?/2 ’
L u(v+2m)? i
(1-— e*iu)(l _ e‘fiv)(l . e*i(u+v)) i 42nfniv(+iu;/?;iu2/2 ]
— v(u+2m
Po(u,v) = u+v+ 27-5)2 —2n4-miv+2miuiuv/2+iu?/2
L v(u+2m)2 i

The trace of the matri¥?’, V] + ¥, V5 is of order 4, whereas its determinant is of order
10, so its minimal eigenvalue vanishes to order 6 and its maximal eigenvalue to order 4.
Since the (matrix) terms that were left out of the computation are all of arder|®),

the eigenvalues of the left-hand side of (31) are also of order 6 and 4, respectively. Now
Theorem33implies that the approximation order 8§ is at most 3.

The fact that the approximation order is at least 3 is trivial: the gym- ¢, yields a
superfunction which is nothing but the box spli?® » 1 (whose approximation order is
indeed 3). The vectop is thus an example where the singularity of the Gramian does not
preclude the existence of a good superfunction.

From our standpoint, th€1-cubic vectord is “good”, since the finite span of its shifts
contains a good superfunction. The notoriety of this case is due to the difficulty in asserting
that this® provides approximation order no higher than 3. The fact that the space reproduces
all cubic polynomials is a sad, misleading, accident. The reader may claim that we ignore
the fact thatd here provides an approximation order which is “disappointing”. While that
might be the case, it goes beyond the realm of this article: we are only interested in ways to
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capture the approximation order of the given space, and not in the construction of SI spaces
that provide “satisfactory” approximation order.

4.8. Good and bad superfunctions, continued

We will now show an example of a vectdrwhose entries seem to be “reasonable” but
which nonetheless does not admit a good superfunction. This example offg twagkther
with the example from the last section of a gobdillustrates the depth of the difficulty in
pinning down the notion of a good generating set for an FSI space.

Let g be a compactly supported bivariate function whose Fourier transgdras a zero
of orderk > 2 at each of the27%\0 points. Moreover, we assume that £ has a zero of
orderk at the origin. There are many ways to construct such a function. For example, one
can take the univariate B-spline of orderapply a suitable differential operatpt D) or
orderk — 1 toit, and then use its tensor product in 2 dimensions. In this gasgjecewise
polynomial of local degrek— 1 in each of its variables, and with suppfilitk]2. It provides
approximation ordek (in Ly, for example).

Now, lete be the bivariate exponential with frequen@r, 0), i.e.,e : x — 29D We
define a vecto with two components

pri=g +eD@Pg, =g —eD?%g.

Here, to recallp* is the normalized monomial differentiation, vizD%?¢ is the second
derivative ofg in the first argument. Despite the fact that egghprovides only approxi-
mation order 2, we contend that the FSI sp&igéL ) provides approximation ordér We
construct, to this end, a compactly supported superfunction as follows.

We choose a vector-valued functiomwith two components that are trigonometric poly-
nomials such that

2,0
v—(8Q2)=cx«M+%

around the origin. We then note that the Taylor expansion of deoéd around the point
(2m,0) is

1(-0%2
2\ 0%°)
At the same time, the Taylor expansion of oréef & around any point of 27\0 other

than(2x, 0) is zero. From this, we conclude that the compactly supported fungtithvat
is defined by

@::v*a

has a zero of order + 2 ateverypoint of 2:7\0. Finally, at the origin@ —|-1%ghasa
zero of ordek + 2.
In order to determine the approximation order provided/bwe consider the expression

W =101 _ WP |- 8P
12 g 2
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The term
|- 14812
W12
is bounded around the origin. The other term,
[, Y1 — Y12
|- 1412
remains bounded (around the origin) even when multiplied by 2. Thus,y provides
approximation ordek (in Lz), a fortiori @ provides that approximation order.
Note that the superfunctiop does not satisfy the desired conditig¢i0) # 0. In fact,

this is necessary in a certain sense. Indeed; bt a Z-periodic vector-valued function
that is continuous at the origin and does not vanish there. Let us further define a fidnction

by

f=10.

Then, up to a nonzero multiplicative constant, the low-order derivativeﬁaﬂf(Zn, 0)
coincide with the derivatives at the origin of the function

(11002 — 1,09z,

Since we assumenot to vanish at the origin, it is clear that some second order derivative of
the above expression does not vanish at the origin. As $gahnot provide approximation
order larger than 2.

While the vector® in this example does not yield a good superfunction, it satisfies the
following positive property: we could use the truncated Gram}%rb is order to determine
the approximation order dfp. Indeed, if we normalize the given vecto(i.e., redefine it
pointwise a/|v|), we obtain a vector for whmh*GE’lj ov Yields the correct decay rate (k)

at the origin. This means, in turn, that the smallest elgenvalldéoqu still determines the
approximation order of the spaég. The superfunction that we obtain in this way (i.e., by
using the normalized) is still not good: it decays painfully slowly ab.

We close this section with two comments:

e We do not know at present of an example where the smallest eigenvalue of the truncated
GramianG%,s does not determine the approximation order of the space provided, of
course, tha@(O) # 0.

e The above example (i.e., of a case when the smallest elgenvaﬁ% ofletermines the
approximation order while there exists no good superfunction) is very much a multivariate
phenomenon. It is not hard to prove that such a case is impossible in one variable, and
we leave it as an exercise to the interested reader.

4.9. An application: approximation orders of smooth refinable functions

We provide in this section one of the most interesting applications of superfunction
theory: lower bounds on approximation orders of smooth refinable vectors. We note that
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approximation orders of refinable vectors are treated in more detail in the next section.
However, the current topic fits better into the realm of this section.

At base, our result will show that oncg is refinable, and oncég contains a single
nonzero functiony from a certain class, the stationary ladder generatedl imust provide
an approximation order that corresponds to the clags @ur definition of the “class” in
guestion requires the Fourier transformjofo decay (in a weak sense) at a certain rate.

This problem has rich history in the context of PSI ladders (see the introductid8]jo
A substantial treatment of the FSI case is giveBi8]. However, that treatment is carried
out under the assumption that the Gramiag is invertible at the origin. In contrast, we
focus in this paper on the situation where there are multiple solutions to a single refinement
equation, and in such a case the Gramian of any particular solutimt iisvertible at the
origin. This understanding was our motivation to look for an alternative approach to that
of [33]. It is useful to stress that, in general, refinable vectors that contain a smooth (even
analytic!) function need not provide any positive approximation order at all. (An example
of this type can be found i[83].) Thus, one must impose certain side conditions either on
the vector® or on the functiony.

Let P be anr x r matrix whose entries arenZperiodic and measurable. Lét be a
vector-valued function with components whose entries aréitj for somes € R. We say
that @ is refinableif the functional equation

b(2)=Pd (32)

is satisfied.
Our goal is to prove the following result. In the result, as well as elsewhere in this
subsection, we use the following notation:
g 1

A:={w e R : Ep < |w| < p}. (33)
Here,p € (0, m) is arbitrary, but fixed.
Theorem 35. Lets <0, and let® C W3 be a solution tq32). With A as in(33), assume

that there existy” € S¢(W3) with the following properties:

1. |f| is bounded above as well as away from zero on A.
2. The numbers

Im=l Y FCH 0P lLgm), meZy
ae2m (2n79\0)

satisfy/,, = 0(2-2"%), for some positive k.

ThenSg(W5) provides approximation order k.

We approach this result via the notion of ttheal equation
v*(2)P = v*. (34)

Here,v is a vector-valued function withcomponents. We require the dual equation to be
valid in some (small) balU centered at the origin, and define the entries ofinal vector
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v to be equal to 0 outside-7, 717\ U. We then extend to a 2t-periodic vector. Thug is
supported o/ 4+ 2779, and satisfies (34) there.
We collect in the next lemma a few simple facts about dual vectors.

Lemma 36. Let A be as in (33)Given anyvg defined on AEQ. (34) can be solved on the
punctured disk

U:={w:0 < |o|<p} (35)
so that the solution v satisfie$s, = vg. Moreover,we have thera.e. on Y

v (0/2") D (w/2" + o) = v () P(w + 2"x), allm e Z, oe 2nZ°.

Proof. We definev by v*(w):=v*(2w)P(w), forallw € 2/A,1 = —1,-2,.... Thenv
clearly satisfies (34) (ob, and hence o® + 2r79).
The second part of the lemma is obtained by iteratimgmes with

VIB(+ ) =" (2)PB(+ %) = v*(2)P(- + D) P(- + )
=v*(2)P2(- + 0)). O

Proof of Theorem 35. By Corollary 3, f: t*® for some Zi-periodict. Denoting byvg
the restriction of to A, we extendyg to a dual vectov by Lemma36. Definingy by

@::v*a
we have, by the same lemma, that, for a.eApand for every nonnegative integar
(/2" = | F)].

Thus, in view of our assumptions fwe conclude tha@ is bounded between two positive
constants around the origin.

Next, we prove thasy, (L) provides approximation ordér The argument will show, as
a by-product, thay e L.

Sincey is bounded away from 0 around the origin, it remains to prove, in view of R&sult
that[y, 1°| - | =2 is bounded around the origin (witlh, y1%=[, ¥1 — [¥1?). Letw € A,
andm a positive integer. Then, by the definitionfand Lemme36

W2 = > WP+ = Y. |fP+2")
ae2nZ9\0 ae2nZ\0
< I <C272% L Clar/2m |,

Thus [n,b lp = 0(|-1%), onthe punctured ball of radiusp centered at the origin. Since
lp is supported ot/ + 217, it follows thatn// hence/, lies in L. Result6 then applies to
show that) provides approximation orddrin L.

On the other hand) = v*®, with v measurable andm2periodic. Sincey € Ly, and
s <0, we have thay € W;. Corollary3 shows then thaf € S¢(Ws). Now, Propositiori1
implies that) provides approximation ord&in W, hence® provides also approximation
orderkin that space. O
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Discussion 37.As the proof of the theorem shows, there is in fact more freedom in the
choice ofA. It suffices to assume thétis compact, that the intersectiohn 24 has
measure zero, and that the unioh__ A /2" contains a (punctured) neighborhood of the

origin. The proof remains essentially the same.

5. Vector refinement equations

In our studies so far, we considered Sl spaces one at atime. There are situations, however,
where several different SI spaces may stem from one common source. In cases of this type,
it is important to study the resulting SI spaces in a cohesive, combined, way.

The best examples of this type are the multiple vector-valued solutions to refinement
equations, and this is, indeed, the topic of the current section. Let us start with the requisite
definitions.

Let P be anr x r square matrix whose entries are-geriodic (measurable) functions
(defined onR¢). The functional equation

2) = Pd, (36)

is avector refinement equatipi® is a refinement(matrix) mask, and a solutio® is a
refinable vector Here, the entries of the vectdr are (measurable) functions, or, more
generally, tempered distributions, defined ®h. The rows and columns of the matx

are, thus, indexed by either the integers 1, .,.0r, more directly, by the entries a@b.

In this generality, Eq. (36) has, as a rule, infinitely many linearly independent solutions.
Indeed, ifP is nonsingular around zero, then a solutiegan be chosen arbitrarily on a set

A of the “dyadic annulus” type introduced in Discuss®nand then continued to the rest

of the Fourier domain using the recipe

DQ2w):=P(w)P(w), we2A, j=01,2 ...,
O(w):=P Hw)PR2w), we2A, j=-1,-2,....

Most of the solutions of the above type will decay very slowly (will not be evelmifit?)).

In contrast, if we assume the entriesPfo consist of trigonometric polynomials, and

if we correspondingly insist on compactly supported solutions, then the solution space
is necessarily finite dimensional (as explained in detail in the next section). The special
instance when the compactly supported solution space is one-dimensional is quite well
understood (see, e.¢5,9,18,24]). We are therefore primarily interested in the case when
there are multiple (in a nontrivial sense) compactly supported solutions to Eq. (36). We
denote by

R(P)

the linear space of all the solutions of (36) whose entries are compactly supported distribu-
tions.

The core of study here is the connection between properties of the refinemenPmask
and its corresponding solution(é) Sl spaces enter the discussion in a very natural way.
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For example, if the solution vectdr lies in Lo, then one has the inclusions
Sp(L2) C D(S¢(L2)),

with D the dilation operatolf — f(2:). Due to the above inclusion, we refer to the Sl
spacesSy generated by a refinabtk as arefinable S| space.

We start our study in this section with the problemeafstenceof compactly supported
solutions to (36). Our second, and main, topic is the characterization of the approximation
orders of the FSI space generated by the solutidtesthe refinement equation. This study
is based on the premise that, in the case where multiple solutions to the same equation exist,
the objective should be the interplay among those solutions, and not only the individual
properties of each one of them. In this course of study, we introduce the notions of the
combined Gramiarand thecoherent approximation ordeand connect them with the (i)
the approximation orders of the Sl spaces generated by the solutions to the equations, (ii)
the polynomial reproduction property of the madakand (iii) the sum rules satisfied By
Finally, we already provided (in Secti@gh9) lower bounds on the approximation order of
a refinable S| space in terms of the smoothness of the smoothest function in that space.

5.1. Compactly supported solutions to the refinement equation

The structure of the compactly supported solutions of (36) was first completely described
in [21]. We now restate the main result of that paper and provide a different proof for it. We
use the partial ordeg on Z¢, defined by

a<b<=a—-be7i.
Also, given a nonnegative integhl;, we set
Zn:={o € Zi Dali=0g -+ og <NYL

Finally, we recall that the definition of the monomial differential operdrincludes the
normalization factor ;1.

Theorem 38. Given anr x r-matrix P whose entries are trigonometric polynomiaist
N:=maxn : 2" € spec(P(0)}.

Then the map
® > (D" ®)(0)sezy

is a bijection between the collectiat( P) of all compactly supported solutions (@6) and
the kerneker L of the map

L:C x2Zy — C' x 2y (Wx)uezy

= 2w, — Y (D FP)O)wp: xe 2y
0<f<a
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Proof. Let @ be a compactly supported distributional solution to (36), and dengte
(D*®)(0), o € Zi. Since the vector-valued functioh is entire, the vectors, are all
well-defined. Moreover, one easily concludes from relation (36) (by appli#dgo both
sides of that identity, expanding the right-hand side with the aid of Leibniz’ formula, and
evaluating the result at 0) that the seque(w@)aezi solves the infinite triangular system

2wy = Y (D" PPYOwy,  aezi. (37)
0<f<a

In particular,(wy),ez, € ker L.

Conversely, let:=(wy)qe z, € kerL. Thenw extends uniquely to a solution to (37) (in
order to solve uniquely fow, in (37) one needs the matrixX*2 — P(0) to be invertible,
which is indeed the case for evepy > N, by our assumption on spég0)).

Let | - || be any vector norm oft”. The operator norm of”*" subordinate td - || will
be denoted in the same way. We claim that for some condtan0,

lwell <A /at, all «ez?. 38
+

Let us see first that (38) yields the existence of a suitable solution to (36).
With (38) in hand, we define (witth)* the normalized monomiap:= Zaezi ! O* wy,
and observe that (each of the entries@i entire of exponential type, i.e., it satisfies

le@<e’®,  al wec, (39)

where| - | denotes an arbitrary norm @if . We need further to show that each of the entries
of g is the Fourier transform of a compactly supported distribution, which, by the Paley—
Wiener-Schwartz theoref86, p. 375, Theorem 19.3[31, p. 216, Exercise 7.4mounts

to showing that (in addition to (38)) the restriction@fo R? has slow growth ato. In
order to prove the requisite slow growth, we follow an argument fiaf: Denoting

Ci:=sup||P(&)| and Cz= sup |g],
EeR? 1<¢1<2

we pickw € R, such that X |w| < 2. By the construction afl, g(2-) = Pg, and hence,
for every positiven, g(2"w) = P(2" w) - -- P(w)g(w). Consequently,

(2" )[| < C2CY < C2(2" [])!0%(CD),

a bound that evidently establishes the sought-for slow growth.
It remains to prove (38). To that end, we pidl§ € N so that

N 3\ .
2—Noj p0 1, 7 1o mrpon S &
PO < <4) 1= %P0

SinceP is a matrix of trigonometric polynomials, there exigts> 0 such that|(D*P)(0)||
<(A/2) /!, all . Moreover, by modifyingA if need be, we may assume tifasatisfies
the estimate (38) for every e Zy,.
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In order to prove (38) fofx| > Np, we may assume, by induction, that (38) holds for all
pwith | 8] < |a|. Then, by (37),
AR AN > 1t
2le=Bl(o — p)! P! 2lo=Bl (o — B)! P!

0< f<a

1@™1 = POwl <
0< f<a

Alel /3 o]
< - 3
o! (2)
hence

< (3)” A A
w, NS — S—.
* 4) @ —=2"|PO)) " al

This proves (38), and the proof is thus completél]

The theorem can be extended to refinement equations more general than (36). For exam-
ple, we can replace the dilation by 2 by a dilation by any matiwhich isexpansive, i.e.,
its spectrum lies outside the closed unit disc.

Theorem 39. Given anr x r matrix P whose entries are trigonometric polynomials and
an expansive x d matrix M, set

N:=max{n : 0 € spec{M' — P(0)}}.
Then,the map
D > (D*D)(0)yezy-

is a bijection between the collection of @dbmpactly supportedyolutions of the refinement
equaﬂon@(M ) = P& on the one handand the kerneker L of the map

L:C xZy — C xZn: (Wy)yezy

= | MM w,— Y D*FPOuwp: a2y |,
0<B<u

on the other hand.

Proof. Analogous to that of Theore88. [

If the refinement equation is inhomogeneous, viz., a given function is added to its right-
hand side, then any solution to it is a sum of its specific solution and a solution to the
corresponding homogeneous refinement equation. This allows for generalizations of The-
orems38 and39to inhomogeneous equations as well. For the exact statemefi213ee

If P(0)is“regular”inthe sense that 1is its largest dyadic eigenvalue, the characterization
of Theorem38is much simpler: every right 1-eigenvector Bf0) gives rise to a solution
® € R(P). However, it is easy to generate examples when the largest dyadic eigenvalue of
P(0) is greater than 1: for example one can replBd®y 2P. In that case, the solutions in
R(2P) are obtained by differentiating suitably the solution®ifP). We close this section
with two results related to the current discussion. In the first, we describe a general setup
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in which the solution spacg(P) is decomposed into the sum of derivatives of solutions

to “regular” refinement equations. In the second result, we provide an example when such
decomposition does not exist. Since the discussion here is somewhat tangential to our main
study of approximation orders, we skip the proof of the following theorem.

Theorem 40. Given anr x r refinement mask Fet R(P) denote the space of compactly
supported solutions t(86),and let N be the maximal integer n for whigh € spec(P (0).
Suppose thatwe can find twa r matrix-valued-functions T an#l such that: (i)T is analytic

and invertible around the origin, (ithe entries of are trigonometric polynomials, (iithe
matrix7'(2-) P — PT has a zero of ordeN + 1 at the origin,and(iv) the Taylor expansion of
degree N of? around the origin is block-diagonal and the spectrum of each block evaluated
at zero intersects the sg/ : j =0, ..., N}atno more than one pointet @ be inR(P),

and assume that each of the entriesbdfias a zero of order | at the origimhen® admits

a representation

N
@:ij(D)qu, (40)
j=l

with @; € R(P/2)), &3j (0) # 0,and p; is a homogeneous polynomial of degre¢ =
l,...,N.

As mentioned before, the solution spakeP) does not always have such structure, as
the following counterexample demonstrates.

Example 41. For some masks Rhe decompositiofd0) from Theoren#0is not valid.
Proof. Letd = 2 and let the masR satisfy the following conditions:

100 000
PO)=|02 0|, D®po=|000|, DEOpP)0) =0.
0-14 001

Let us show that the following inclusion fails:

span(D*®(0)y < n : P € R(P), B(0) = 0]

d
~ 1
c Zspan[(D“ (09®) (0)w<n:PeR (EP)} . (41)

j=1

Heree; is the vector inZi with 1 in positionj and zeros elsewhere. By Theor@8, this
is equivalent to the fact that (40) fails.
N+d
The sequences in (Vi) (inour caser = 3,d = N = 2) indexed by, 2| < N,
we envision as “long” vectors with components, each of length, all stacked together
in some fixed order, e.g., in the graded lexicographic order ofthe
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Relation (41) is, again by Theore®8, equivalent to the following:

d
kerLo < ) kerL;, (42)
j=1
where
Lo: €O & G - (wy) o @71 = POYwa— Y D*PPOuy,

0<fi<o
1<lal <N,

N+d

L CVX(N 1)_>(Dr><(
(wy) — { @1 — PO)wy — >, < pea D /jP(O)u)p if a>e; 1< |a| <N.
) Wy, otherwise,
Now, (42) fails iff its dual statement
ranLg 2 N9_y ranL’; (43)

fails. Here (43) is obtained from (42) by taking orthogonal complements on both sides and
using the property ket = (ranA*)®, which holds, in particular, for any linear map acting
on a finite-dimensional Hilbert space.

0 0
Now letw,1y:=| 0 |, w(,1):= 1 |.Then
-2
wo.1) 0 w(L0)
0 0 0
0 w(1,1)
0 0 0

but, by direct calculation, the vectaris not in the range of.§. [
5.2. Coherent approximation orders

The general theory of approximation orders of FSI spaces (Section 4) focuses on the
individual spaceSg and its properties. In contrast, when studying the solutions of the
refinement equation (36), we believe that the focus should be on the interplay among the
various solutions, in other words on their “common ground”. An attempt to establish a
theory that treats simultaneously all the solutions of (36) should be done with care: it is
easy to show that different solutions of the same refinement equation may have completely
different properties, as the following discussion makes clear.

Discussion 42.Forj =1,...,r,let¢o; j bea(scalar valued) refinable function with (scalar)
maskp ;. Thatis, eaclp; is 2n- perlodlc and1> 2) = p,(j) DefineP:=diag(p, ..., pr),
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@::(qu)’/:l. Theng is arefinable vector with magk For each fixe§l the vectord ; whose

jth entry 'is¢>j and all other entries are 0 is refinable with respeét.t8ince we may select
the original refinable elementg ) in a completely arbitrary manner, it is clear that the
different solutiong®;) ; to the same refinement equation may be very different one from
the other.

This discussion reveals another difficulty that arises when dealing with different solutions
to the same refinement equation: wity the Gramian ofp;, that Gramian isingularat
the origin. It is well known that this is not an accident:

Result 43(Jiang and Shef4]). Let® C Ly be a compactly supported refinable vector
with GramianG ¢. If G ¢(0) is invertible,then the spectral radiug(P (0)) of P(0) is equal
to 1, lis the only eigenvalue on the unit circend 1 is a simple eigenvalue.

That is, the Gramian of a refinable function is invertible at zero only if the spectrum of
P(0) is of a special nature, which, in particular, implies that the refinement equation has a
uniquesolution. We note that the analysis of the approximation order of this case (viz., a
refinable vector whose Gramian is invertible at the origin) is carried d&t 8] and isnot
among our objectives here (although we will recall those results momentarily).

In order to deal with all the solutions of a fixed refinement equation in a combined fashion,
we introduce first the notions of thmombined Gramiarand thecoherent approximation
order of the solutions. LeP be a refinement mask, and lgb4, ..., @,) be a basis for
the solution spacé& (P) of the underlying refinement equation (36). Assuming that, for
somes € Rand foreveryj =1,...,n,®; C Wg(Rd), we define theombined Gramian
Gr(p),s Of the refinement equation (36) to be the sointhe individual Gramians:

n
GR(P),SI=Z Go,s-
Jj=1

Although the above definition depends on the particular basis that we choose for the solu-
tion space, our subsequent analysissof p) s is independent of the basis’ choice for the
following reason. LetB = (@4, ..., ®,) be a basis foR(P). We consideB as anr x n

matrix. Thanks to the identity

n
> @@, = BB, (44)
=1

we conclude that
Grpys =y, (BB*|-1*)(-+w.
ae2nZ?
A new basis forR(P) can be written aBM, with M ann x n constant matrix. Thus the
combined Gramian for the new basis has the form
Greprsi= ) (BMMB*|-*)(-+ ).

ae2nZ?
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Therefore, for some constartsC > 0,
CU*GR(p),SU < U*GR(P),SU < CU*GR(p),SU

for any vector. Using the above inequalities, one can easily check that all our subsequent
results are independent of the choic®of\Ve also use the notion of the truncated combined
Gramian:

n
0 . 0
GR(P),S'_ Z G@j,s'
j=1

Definition. Let P be a refinement mask whose solution sp&¢®) lies in Wg([REd). Let
Gr(p),s be the corresponding combined Gramian and;%(tp)’s be the truncated combined
Gramian. We say that (P) (or, in short,P) providescoherent approximation orderikthe
following condition holds: there exists a neighborhd@df 0 such that

0
1 . U*GR(P),S(CU)U
|w|%=2 "o v*GRepy,s (@)U

the functionMp ;& : © belongsto Lo (Q).

While Theorem21 provides ample motivation for the above definition (specifically, it
shows that the coherent approximation order coincides with the usual approximation order
notion in case the solution space of (36) is one-dimensional), we note that the coherent
notion of approximation order does not translate immediately into any clear statement on
the approximation order of the individual solutions.

Discussion 44.Let us continue with the example in Discussi We observe that in the
case discussed thel@g(p),s = diag(Gy, s, - .., Gy, ), With Gy,s the (scalar) Gramian

of qﬁj, ie., [25]-, $j] in the Lo-case. It follows easily then that the coherent approxima-
tion order matches or exceeds the approximation order provided;bffor any value
of j).

In order to advance our discussion, we consider veatdlst realize the coherent ap-
proximation ordek. That is, withQ C R? some neighborhood of the origin,

Qswmr— viw) el
is measurable, and, a.e. By

VH(0) G p)  (@)V(0)

s

= 0(|w|*=2). (45)

v*(0)GR(p),s(@)v(w)
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We call suchv a universal supervectofof orderk). A vectorv is aregular universal
supervectoif (45) can be replaced by the conditions that, near the origin,

% %0
V'GR(P)sV .2 and V' GRp). sV
v*v v*v

2k
=0(-17). (46)
A regular universal supervector is clearly a universal supervector.

Discussion 45.The existence of a universal supervector is implied (almost automatically)
by the definition of coherent approximation order. The proof of this fact parallels the proof
of the superfunction existence (Theor@2) and is therefore omitted. The regularity of a
universal supervectarmay be implied by either of the following two stronger assumptions:

(1) The combined Gramia@ g(p) s is invertible a.e. around the origin, and the norm of
its inverse there satisfies

IG5 =0(- 7).

Indeed, in that case*G p v >cv*v| - |* for some positive constant, since||G;i|| is
proportional to the reciprocal of the smallest eigenvahyg,(Grp).s) of Gg(p).s and
V*GR(P).sV = Pmin(Gr(p).s)v*v. On the other hand, if is a universal supervector, then

e
v*G, w< constu™ Y @d7| - |Fv< const - ¥,
deB

where the last inequality follows from the fact that @lle B are compactly supported, so
their Fourier transforms are bounded around the origin. Therefore, the first, hence all the
conditions in (46) are satisfied. R

(2) For one of the solution® € R(P), [v*®|/|v|>c¢ > 0, a.e. in some neighborhood of
the origin. Indeed, then

PO
U*ZJNP | %0~ |Zv*
PeB

and the conditions (46) follow from the fact thats a universal supervector.

We now connect among the notions of coherent orders, approximation orders, and regular
universal supervectors. It is worthwhile to note that the following result does not invoke
the fact thatR(P) comprises the solutions to (36). We do not even need the fact that the
individual vectors inR(P) are refinable.

Theorem 46. Assume that the refinement mask P provides coherent approximation order
kin W3 (R?). Then

(a) LetSp C W‘ZT([R") be the Sl space generated ByP) (i.e.,it is the smallest closed Sl
subspace oWg(R") that contains each entry of each vectorRiiP)). ThenSp is an
FSI space and provides approximation order k.
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(b) Letv be aregular universal supervector of order k that is bounded in a neighborhood
of the origin.Let @ be a solution of the refinement equatidimen
0] v*G?psv = 0(| - |%) around the origin.In particular, the functiony defined by

lﬁ —v*® satisfies the SF conditions of order k.

(i) If, for some positive q,v*<15| >c a.e. in some neighborhood of the origthen Sy
provides approximation order WMoreover,with s € S¢ defined byy: —v*®, the
PSI spaces,, already provides that approximation order.

Proof. (a) LetB be a basis foR(P). ThenSp = Sp, with F any vector that contains all
the entries from all the vectotse B. HenceSp is FSI.
Now, letv : [—7, n1]Y — C’ be a vector that realizes the coherent approximation order
k,i.e., a.e.ofi—mx, n]¢,
”*ZR(P) U <ol P (47)
R(P), U

If follows that for a.em € [—7, 7]¢, there existsp € B such that

v*(w)G%’S(w)v(w)

Lclo)*%. (48)
V(@) G 5 () V()

This allows us to represeft-n, ] as the disjoint union of set8¢, ¢ € B such that (48)
holds for everyd € B and a.ew € Qg. We need, furthermore, to ensure that these sets are
measurable. We argue the measurability as follows. First, sinseneasurable, so are the
functions from the left-hand side of (48). Therefore, the function

@ > min v (@)GY (@) (o)
fmln W deB U*((L))G(p,x (w)v(w)

is also measurable. Thus, once we defi2g¢) by

. o VM (@)GY, (@)v()
Q@— w € [ T, TC] . fmm((l)) = U*(w)G(p’S(w)v(w) , @ S B,

we obtain the requisite measurability.
Now, lettg, @ € B, be the Z-periodic extensions of the characteristic function€gf
@ € B. Defining ®g via its Fourier transform as follows:

6012 Z w@,
deB

we conclude from Corollan that each of the entries @b lie in Sp ;. Consequently,
See.s C Sp,s. On the other hand, the definition & and inequality (47) imply that, a.e.
on[—m, n]‘l,

* ~0
v Gdio,s”

——— e P2 (49)
V*G @5V
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This, in view of Theoren21, shows thafg, provides approximation ordér(in Wg([R{d)),
a fortiori its superspacgp provides that order.
(b): The regularity of the supervectoiimplies that, around the origin,
0
U*GR(P)’SU
v*v

Sincev is assumed bounded, we conclude that

=0(-1%).

V*GRpy v = 0 1)
and therefore
v*GY v =0(-1%)

for every® € R(P). This proves the first part of (b)(i), while the second part follows
from the fact that each of the summands- +oc|2Y(<D<I)*)(- + a) v (that together make up
v*G% , V) is nonnegative, hence has to vanish to ordeagwell.

As to (b)(ii), the analysis above shows that the funcijodefined by@::v*@ satisfies
W10 = 0. 9 — W21 12 = 0 - %)

(near the origin). Since we further assume here tﬁalzc > 0 around the origin, we
also conclude thdty, /], > c?| - | there. Thus, (5) of Theoreholds, and that theorem
implies thatSw(W‘z‘(Rd)) provides approximation ordér [

The first part of Theorem6 leads to the following conclusion:

Corollary 47. Let P be a refinement mask and it C W;(Rd) be the corresponding Sl
spacelf P provides a coherent approximation ordertken there existg € Sp for which
the PSI spacsy, C Wg(IR") provides approximation order k.

Remark. Note that the combined Gramiahg ; can be defined for anfjnite-dimensional
spaceR of distributional solutions to the refinement equation (36). Likewise, the notion
of (regular) universal supervectors makes sense with respect to any suchRspHue
requirement thaR be the space of all compactly supported solutions actually plays no
role in the results of this section. The only condition used is that, for dach R, its
Fourier transform® be bounded around the origin. Therefore, all results of this section are
applicable to this more general setup.

5.3. Universal supervectors and sum rules

5.3.1. Known results: singleton solutionsiin(R?)

The characterizations to-date of the approximation power of refinable vectors are confined
to the L,-setup, and assume, at a minimum, that the Gramian of the (necessarily unique)
compactly supported solution is invertible at zero (as well as at several additional points).
These characterizations allow one to deduce the approximation order provided by the refin-
able vector directly from the mask. Two relevant notions in this contexCarelition Z;
and thesum rules. We begin with the definition of the former.
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Definition. Givenk > 0, we say that the refinement maBksatisfies Conditioryy, if
there exists a vectar of trigonometric polynomials such that, for eack E, the vector
v*(2:)P — 9;,0v* has a zero or orddrat n/, while v(0) # 0. Here,

E:={0,1)¢, (50)

is the set of vertices of thé-dimensional unit cube.

Result 48(de Boor et al[5], Jia [18]). Let P be a refinement maskd assume thatim
R(P) = 1.Let® be the unique solution ¢86),and assume thak c L»(R?) is compactly
supportedand thatG ¢ is invertible at the originThenfor k € N:

I. If P satisfies Conditior¥; thenSg provides approximation order k.
II. If S provides approximation order k andd ¢ is invertible at each point of £, then
P satisfies Conditiox.

We note that the compact support assumptiornboin the above-quoted result can be
weakened: the essential needed information is about the behavior of the Gramian around
E. We refer td5,15] for more details.

Condition Z;, is written on the Fourier domain. It can be equivalently expressed on the
“space” domain. The equivalent space-based formulations of Conditiane colloquially
known as thesum rules. We provide, for completeness, the two frequently used versions of
these sum rules. The second is taken fiidin(see alsd14]), while the first is borrowed
from [18].

Result 49. Let® C L, be compactly supported with trigonometric refinement masleP.
v be a vector of trigonometric polynomialBhen the following conditions are equivalent:

(a) P satisfies Conditioix; with respect to the current.
(b) The pairv, P satisfies thelst version of sum rulesvith (v,) and (P,) the Fourier
coefficients of v and Respectively,

D D Vi Pueeql+2) =27 wfq(), 1€E gqell

ez yez? yezd

(Note thatv, is a vector,P, is a matrix,andg(y) is a scalar.)
(c) The pairv, P satisfies th&nd version of sum ruleVith v* = D*v(0), a € Z%_, the
Taylor coefficients of v at the origime have:

Z 2Pl =Py (DPPY(nl) = 8, 000™)*, 1 €E, |a| <k.

p<a

Proof. The second version of the sum rules is equivalent to Condifipnas seen by
applying D% to v*(2:) P — d;,0v*, expanding the first term by Leibniz’ rule, and evaluating
theresult attl, [ € E.

The equivalence of the first version to ConditiBpcan be argued as follows: first, recall

that for a finitely supportesl € sz, its Fourier serie$ has a zero of ordek at the origin



142 O. Holtz, A. Ron / Journal of Approximation Theory 132 (2005) 97-148

iff IT_; lies in the kernel of the functional

s 1q = (s %q)(0),

wheres x ¢ is either the semi-discrete convolution or the discrete convolution (the statement
is true for each of the two choices) of the sequesnaed the polynomiad). Letm € E, and

lets,, be the (vector-valued) Fourier coefficients of the functid(®-) P (- + mm) — o, ov™.

Thus, ConditionZy, tells that, for every; € 11 and for everyn € E,

0 = /,'L-Sm (q) = Z Uiypﬂq(zy + n)enin-m - 5m,0 Z Uiy‘](“/)
"NIGZ‘I yez4

Fixing some € E, we can writeg = I + [ + 20, for suitables € Z¢, andl’ € E. Thus,

0= "> v Prips2oq(2 + 20+ + D™ D™ — 5,03 0% q().
7

I'eE 7,0

Multiplying the two sides of the last display lzy ™/ and summing ovem, we obtain

0=> "> """ Prirsosq@y+20+1'+1) Y ™™ =3 0" g().

I'eE 7,0 mekE

Thus,
0=2"Y 0" Priasq(2y+ 20 +1) = Y v*,q(7).

7.0 Y

Replacingy by y — ¢ finishes the proof. [

5.3.2. New results: multiple solutions Wi;

Our analysis of the multiple solution case is based on drawing a connection between uni-
versal regular supervectors on the one hand, and Condiji¢together with its associated
sum rules) on the other hand. This approach requires some limited regularity formulated in
terms of the combined Gramia&y ; of the spac® of refinable distributions (see Theorem
53for the precise assumption).

So, letP be an x r refinement mask and I&be a finite-dimensional space of solutions
to (36) lying in some Sobolev spack:C WZS([R{‘J) (in the sense that every entry of every
vector inRliesin W3 (R9)). Letk be a positive number. We consider vector-valued functions
v, that together withP andR satisfy the following assumptions:

Assumptions 50. 1. There exists a neighborhod? of the origin,such thata.e. ong2,

|Gkl = { o0 ), 1<0 (51)

2. The entries of v ar@rn-periodic and measurabléMoreover,v*v is boundedand
bounded away from zeraround the origin. N R

3. For somek > 0, and for every® € R, the functiong defined byp:=v*® satisfies
condition(11).
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Note that AssumptionS0 are valid (regardless of the value kf wheneveR contains
only compactly supported solutions, ands a vector-valued trigonometric polynomial,
provided that (0) # 0.

Theorem 51. Let P be anr x r refinement masket R C Wg(le) be a finite-dimensional
space of solutions t(86), and let v be a vector-valued functiosp that P,R and v satisfy
Assumption§0with respect to some > 0. If P and v satisfy Conditioi;, thenv*G§ v
has a zero of ordegk at the origin,and,in addition,for every® € R, P — (v*ai)(O) =
O(| - 1%, provided thatv*® is smooth at the originin particular:

(@) If v*Gryv ~ | - |* a.e. around the originthen v is a universal supervect@with
respect to Rpf order k,and hence R provides coherent approximation orderHis,
for examplejs the case ilG g ; is invertible(a.e.)in a neighborhood of the origirand
IGELI = 0( - |7%) a.e. there.

(b) If, for some® € R, |v*5|>c > 0 a.e. around the originthen (a) applies,and we
further conclude thaf¢ provides approximation order k.

Proof. Leto € 2n79\0, and letm:=m(x) >1 be the smallest integer for which2" ¢
2n7¢. Letd € R.We prove, by induction om (a), thatv*®(- 4+ ) = O(| - |F). Form = 1,
we choosé € E\0 such that 2/ — o € 4n7¢. Since

* 5 o - -
v<15(+oc)_vP<2+7rl)(D< . )

the claim follows from the fact that* P (5 + nl) = O(| - [¥). Form > 1, we write

* 5 _*'A'+a *-_*;A--‘rOC
cacan =2 (5)8(5)+ (r () - (3)2(57).
By ConditionZy, v*P(-/2) — v*(-/2) = O(| - ). In addition, sincen(2/2) = m — 1, the
induction hypothesis yields that (-/2)®((- + «)/2) = O(| - %), too.
Now, fix @ € R and definej:=v*®. Sincev is bounded angy € W, we can invoke
Corollary3 and conclude that e S¢(W5). Sincey satisfies (11) (as stipulated in Assump-

tions50), and since, by our argument abowye; + «) = O(| - |F), for everya € 277\0,
we see that

S Wt = 0( - 1%). (52)

ae2nZ7\0

However, the left-hand side in the above equalitykié‘%’sv, and, hence, by summing (52)
over a basis oR we obtain that)*G%(P)’sv =0(-1%).
__Next, withy/ as above, the cage= 0 in ConditionZ, together with the boundedness of

@ around the origin (the latter is embedded in AssumptE®ismply that
V@)= = " @)P —vH)d = 0(- ).

Once we assum% to be smooth around the origin, the above implies %at ’z/;(O) =
O(| - %), as claimed.
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The proofs of (a) and (b) are straightforward, hence are omitted.
Since the case of compactly supported solutions and a trigpnometric polynoiniaf
central importance here, we record separately the statement of ThBafenthis case.

Corollary 52. Let P be a trigonometric polynomial refinement mdskR(P) C W; be

the space of all compactly supported solutions to the refinement eqaépmand let v be
a vector-valued trigonometric polynomi@uppose that P and v satisfy Conditigp for

somek > 0. Then:

1. For each® e R(P), the (compactly supportedy defined byfﬁ::v*@ satisfies the
SF conditions of order kand in addition,)y — (0) = O(| - ¥). Consequentlyif
v*(0)®(0) # 0, thenSqe (W) provides approximation order lgndy € Sp(W5) is a
corresponding superfunction.

2. If v*(0)®(0) £ 0for some® € R(P), then P provides coherent approximation order k,
and v is a corresponding universal regular supervector.

At present, we do not know whether Conditighy is necessary for the provision of
coherent approximation ordérin case dimR(P) > 1. The results of this type that we
are able to prove make strong assumptions on the iRa8lelow is one such result. The
stringent assumption here is th&t0) = 7. In what follows, we use the notatic(ﬁ\%(m’s
introduced in Sectiob.2for the truncated combined Gramian. We prove the result only for
s = 0, although it extends to other valuessght a cost of a few technical details and more
awkward notation).

Theorem 53. Let P be an rx r trigonometric polynomial refinement mask andR&®) be
the space of compactly supported solution§3®). Suppose thak (P) C L2 and that the
combined GramiarG gpy satisfies Assumptids0.1,is smooth around eache E and is
boundly invertible around eadhe E.If P(0) = I, the following conditions are equivalent:

(a) P satisfies Conditiox;, with some vector v satisfying Assumpti®&@s2and50.3.
(b) There exists a regular universal supervector v of order k for the Sp¢®.

In addition,a regular universal supervector v of order k can be always chosen scdftiat,
every® € R(P),

Ve — (0 ®)(0) = O(| - ).

Proof. In view of Theorenbl, we only need to prove the implication (B (a).
We start the proof by noting the identities

Grep)(2) =Y (PGrpyP*)(-+ ) (53)
leE
and
Gp)(2) = PGYp)P*+ > (PGrpyP*)(- + 7). (54)

leE\O



O. Holtz, A. Ron / Journal of Approximation Theory 132 (2005) 97-148 145

The first identity is straightforward (and is quite well-known; [@4]). The second one is
obtained by the subtraction of the identity

Y (@07 @2)= Y Pod P
deB deB

from the first one. HereB is the basis folR (P) that was used to defin@gp).
Let t be any Z-periodic vector-valued function that satisfies the condition

TGyt =0(- 1), (55)

near the origin. Thel(l‘c*G%(P)r)(Z) = O(] - 1%) near the origin. Thus the evaluation at
7(2-) of the quadratic form in the right-hand side of (54) leads to a function which has a
zero of order 2 at the origin. Since each summand there is nonnegative, it follows that, for
everyl € E\O,

(2 )(PGrepy P*)(- + 1)t (2) = O(] - ).

However,G g(p) is assumed to be boundly invertible arouticihence we must have that
(2:)P(- 4+ 7l) = O(| - |¥), near the origin, for everye E\0. In addition,

(2 (PG p) PHT(2) = O( - [*). (56)

Now, letv be a universal supervector. Then, (55) is satisfied fer v, hencev satisfies
the requirements in Conditiod; with respect to each # 0. It remains to modify (if
need be) so that Conditidfy, be satisfied at = 0, too. Note that so far we have not used
out special assumption dh Still, we already know that (56) is satisfied for= v.

In order to complete our argument, we assume that I + O(| - [¥) near the origin.
We will revisit this condition after completing the main part of the proof. This additional
condition, when applied to (56) leads (once we take into account the boundedness and
self-adjointness of;}, ) to

T(2)GRpy1(2) = O( - |?). (57)

Thus, we proved that (55) implies (57), and hence, since (55) is satisfied:forv, we
conclude that

v (2")Gypyv(2') = 0( - %) foralln e N. (58)

Our previous analysis then implies thét(2"-) P(-+nl) = O(|-|¥), for every integen > 1,
and every € E\O.

Now, by forming a suitable finite linear combination @f2"-), n = 0,1, ..., we can
construct a vectan such that(0) = v(0), whileu —u(0) = O(| - |¥) at the origin. Clearly,
u*P(-+nl) = O(|-|%), foreveryl € E\0. Since bothx —u(0) andP — I have &-fold zero
at the origin, we conclude that (2-)P — u* = O(| - |¥). Thusu satisfies Conditiorzy.

We finally contend that there is no loss of generality in the assumptionPthat! =
O(| - |¥) around the origin. Indeed, consider the transformafior> 7~-1(2.)PT, where
T is a matrix-valued trigonometric polynomial, such tHa) is invertible. For eachw
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in some small neighborhood of the origin, we have the linear isomorphism defined on
{®(w): ® € R(P)} by

() > T(0)D(w).

Since eachd ¢ R(P) is entire, the isomorphisms induce a corresponding one between the
spacesk(P) andR(T~1(2.)PT). Moreover, ConditiorZ; is invariant under this isomor-
phism, since the vectar*(2-) P — J; ov™ vanishes to ordek at n/ for each/ € E if and
only if so does the vectaw*7)(2-)(T~1(2:)PT) — 01,0(v*T).

So, if we can show that we can choose a matrix-valued polynoh{iafl degree smaller
thank) so thatr"(0) is invertible and

PT =T2)+ O0( - %), (59)

then our claim will follow. To this end, leT' (0) = I and let the derivative6D*T)(0) be
defined inductively, according to the partial order of multi-integeras solutions to the
equation

Z (D“*/’)P)(O)(DﬁT)(O) — 2|°“(D°‘T)(0), 0< |o <k. (60)

0<B<u

This system is obtained by differentiating (59) at the origin and is equivalent to (59). For
a fixeda, the values(DﬁT)(O), B < o are already chosen, and the coefficient of the term
D*T (0) is 21l — 1 # 0 (sinceP (0) = I). Thus, (60) has a solutiaiD*7')(0). Thus,P can

be assumed to be withi@ (] - |¥) of the origin. This completes the proof]

5.3.3. Coherent polynomial reproduction

We restrict our attention again to the spa&e) of compactly supported solutions to the
refinement equation (36). We show that universal supervector#®y are also ultimately
connected with polynomial reproduction using the shifts of any compactly supported solu-
tion from R(P). In short, we show that universal supervectors provide universal polynomial
reproduction schemes:

Theorem 54. Let P be a refinement mask whose space of compactly supported solutions
R(P) lies in Wg(Rd). Let v be a vector-valued trigonometric polynomial such tlat,
somek > 0, any one of the following conditions holds:

1. v satisfies Conditior.

2. v and P satisfy thd st version of the sum rules.

3. v and P satisfy th&nd version of the sum rules.
4. v is a regular universal supervector of order k.

Let a be the vector-valued sequence of the Fourier coefficient$, @ind let® € R(P).
Thenwithay, ..., a, the entries of a andy, .. ., ¢, the entries ofp, the map

.
To: q Zqﬁi * (a; ¥ q) = P+ (a¥ q)
i=1



O. Holtz, A. Ron / Journal of Approximation Theory 132 (2005) 97-148 147

maps I into itself. The map is surjectivghence degree preservingf) and only if
v*(0)@(0) # 0.

Proof. By Result49, conditions 1 through 3 are all equivalent, and, by Thedsénpeach

of them implies 4. Condition 4, in turns, implies that, for adye R(P), the compactly
supported functiony defined bylp —v* & satisfies the SF conditions of orderThe dis-
cussion preceding Theorel@ now implies that the semi-discrete convolution operdter
reproduces polynomials of total degree at nkostl and, moreover, preserves the degree if
¥ is nondegenerate, i.@/(0) # 0. Buty itself is nothing but the semidiscrete convolution
@ ' v*. Since the convolutior’ is associative, we see that the functién’ (v* ' q) is

a polynomial inIl -, wheneverg € II;; moreover, it has exactly the same degree| as
wheneven*(0)@(0) = y(0) #0. O
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