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1. Introduction

1.1. General

We are interested in this paper in the approximation order ofshift-invariant(SI) spaces
of functions defined on the Euclidean spaceRd , d�1. Such spaces play an important
role in several areas of real analysis, including spline approximation, wavelets, subdivision
algorithms, uniform sampling and Gabor systems. It is not surprising, thus, that the theory of
approximation and representation from SI spaces received significant attention and enjoyed
rapid development in the last 10–15 years. The determination and understanding of the
approximation ordersof these spaces is among the main pillars of this theory.

As the title of this article indicates, we restrict our attention to approximation in Sobolev
spaces: givens ∈ R, we denote byWs

2(R
d) theSobolev space of smoothness s, i.e., the space

of all tempered distributionsf whose Fourier transform is locally inL2(R
d) and satisfies

‖f ‖2
Ws

2(R
d )
:=

∫
Rd
(1+ | · |)2s |f̂ |2 <∞.

(Here and elsewhere,| · | is the Euclidean distance inRd .) A closed subspaceS ⊂ Ws
2(R

d)

isshift-invariantif it is invariant under allshifts, i.e., integer translations, or more generally,
scaled integer translations: given a fixedh > 0,

for every� ∈ hZd and everyf ∈ Ws
2(R

d), f ∈ S �⇒ f (· + �) ∈ S.
When necessary, one identifies the underlying parameterh by referring toS ash-shift-
invariant, and/or by denoting the SI space asSh. Also, sometimes, in order to emphasize
the ambient spaceWs

2(R
d)we writeS(Ws

2), instead of simplyS. The smallest SI space that
contains a given� ⊂ Ws

2(R
d) is denoted by

S�:=S�(W
s
2),

or, in complete detail,Sh�(W
s
2), and we refer then to� as agenerating setof S�. The basic

objective of SI space theory is to understand properties of SI spaces in terms of properties
of their generating sets. In this regard we recall that an SI space generated by asingleton
� = {�} is known asprincipal shift-invariant(PSI), while the one generated by afinite�
is referred to asfinitely generated shift-invariant(FSI).

Now, assume that we are given aladderS:=(Sh:=Sh(Ws
2))h>0 of SI spaces. Letk > s.

We say thatS provides approximation order k(in Ws
2(R

d)), if, for everyf ∈ Wk
2 (R

d),

dists(f, S
h):= inf

g∈Sh
‖f − g‖

Ws
2(R

d )
�Chk−s‖f ‖

Wk
2 (R

d )
,

with the constantC independent offandh.As is essentially known[39,40,16](and developed
fully in this paper), the above notion of approximation order depends strongly onkbut only
mildly ons. The ladderS is PSI or FSI if each of its componentsSh is a PSI, or, respectively,
FSI space.

The literature on approximation orders of SI spaces is vast, and it is not within the scope
of this paper to provide a comprehensive review of it. We refer to the introduction and the
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references of[3] as well as to the exposition and the references in the survey article[15].
Many specific results on the topic are reviewed in the body of this article. In particular,
a complete characterization of theL2-approximation orders (i.e., the cases = 0) of PSI
ladders is obtained in[3], while the analogous results for FSI ladders are obtained in[3–5].
There are also numerous results on approximations in other norms, for example, inLp.
Results and references in this direction can be found in[26,25]. In addition, we refer the
reader to[14,23,30,33]for information on approximation properties of refinable SI spaces,
and to[17,19,20,22,27–29,32]for results on wavelet constructions based on SI spaces.

1.2. Motivation

While the current level of mathematical understanding of the issue of approximation
orders of SI spaces is quite advanced, there are numerous gaps and inconsistencies in it. This
is exactly the motivation behind the present endeavor: obtaining seamless, cohesive (and, so
we hope, final) theory. We provide a few examples for the “gaps” and “inconsistencies” in
the state-of-the-art theory. Let us first define two important classes of SI ladders: stationary
ladders, and local ones.

Definition. Let S be an SI ladder. We say thatS is stationaryif, for everyh > 0, Sh =
S1(·/h):={f (·/h) : f ∈ S1}. Given a stationary ladder, we say thatS is alsolocal if S1

is FSI and is generated by acompactly supported�.

Discussion 1.(1) Let us assume thatS is PSI, stationary and local. Then the entire ladder
is determined by the (compactly supported) generator� of S1 (since the other spaces in
the ladder are dilations ofS1). In this case, one usually refers to� asthe generator of the
ladder. The current theory covers the cases�0, and shows that the approximation order
in L2 (as well as inWs

2, s > 0) provided by such ladders is intimately related to the order
of the zeros that̂�, the Fourier transform of�, has at the punctured lattice 2�Zd\0 (cf.
Section 3.2). The smoothness of�, on the other hand, does not play any role, provided,
of course, that� ∈ L2 (which is required for the definition ofL2-orders to make sense).
Thus, if we replace� ∈ L2 by its convolution product with a smooth generic mollifier, the
L2-approximation order of the ladder, in general, will not change. In contrast, if� �∈ L2
while its Fourier transform does have the requisite zeros on 2�Zd\0, the smoothing may
simply result in anL2-function, and the ladder may then provide high approximation order
in L2 (despite the fact that theL2-approximation order provided by the initial ladder is
zero). One expects that the extension of the notion of approximation order toWs

2, s < 0
will remove the above artificial hump, and this is, indeed, the case.

(2) Retaining the same setup as in (1), it is also quite well-known that if�1 and�2 are two
compactly supportedL2(R)-functions, and if the PSI stationary ladder generated by�j ,
j = 1,2, provides approximation orderkj > 0, then the PSI stationary ladder generated
by �1 ∗ �2 provides (at a minimum) approximation orderk1 + k2. One expects then that,
if k2 = 0, the approximation order provided by�1 ∗ �2 will be at leastk1. This, however,
is not the case, and there are examples when the aforementioned approximation order is
smaller thank1. This nuisance is fixed (in Section 3.4) via the introduction of negative
approximation orders.
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(3) Let us consider now the case of local stationary FSI ladders inL2. In this case
S1 = S1

�(L2), with �:={�1, . . . ,�r} ⊂ L2(R
d) compactly supported, and withSh =

S1(·/h), 0 < h < 1. A cornerstone in the analysis of the approximation order of such
ladders is the existence of a superfunction, i.e., a compactly supported function� ∈ S1

whose associated local stationary PSI ladder already provides the same approximation or-
der as the original FSI ladder (cf. Section 4.2). The existence of such a superfunction is
proved in[4]. However, the Fourier transform of the superfunction� may vanish at the ori-
gin, a property that denies us the existence of effective numerical approximation schemes
from its associated ladder (we refer to such superfunctions as “bad”). In[5], this prob-
lem is overcome, but at the price of imposing an additional condition on the vector� (its
Gramian should be invertible at the origin; see Section4.5 for a complete discussion). At
the outset of the current venture, we observed that the condition assumed in[5] is not
necessary for the existence of a “good” superfunction (i.e., a superfunction� for which
�̂(0) �= 0). Unfortunately, a good superfunction may not always exist: in Section4.8 we
construct an FSI vector (withd = r = 2) for which all the compactly supported superfunc-
tions are bad, dashing thereby our hope that a good superfunction may be proved to exist
in general.

(4) Let S be a ladder as in (3), but assume, in addition, thatS1:=S1
� is refinable, i.e.,

thatS2 ⊂ S1. It is then known (see, e.g.,[28,12,33]for the PSI case and[33] for the FSI
case) that theL2-approximation orders provided by the ladder are bounded below by the
smoothness of�: if � ⊂ Wk

2 (R
d), then the ladder provides approximation orderk + 1 or

higher. Moreover,[33] proves (ford = 1, and under some mild conditions on� for d > 1)
that approximation orderk + 1 is implied by the mere existence of a nonzero functionf
in S1 ∩Wk

2 (R
d). However, all these results assume more than the smoothness off and the

refinability ofS1: they require in addition the entire vector� to lie inL2. The removal of this
condition (Section 4.9) leads to a conclusion that says, essentially, that forS to provide some
approximation order, it should contain one nonzero function of corresponding smoothness,
and nothing else.

(5) Our final example still deals with refinable ladders. One way to obtain a refinable
spaceS� is to select anr × r matrixPwhose entries are trigonometric polynomials and to
seek a compactly supported vector-valued function� that solves the refinement equation
�̂(2·) = P �̂. A major goal in this direction is to reveal the approximation order of the
stationary ladder generated by� in terms of properties ofP (see[14,18,5]). The ultimate
known result in this direction,[5], requires a regularity condition on� that necessarily fails
once the above refinement equation has (in a nontrivial way) more than one solution. Thus,
there is no theory at present that deals with the approximation orders of refinable vectors,
once the refinement equation has multiple solutions. Section 5 deals with the approximation
order of stationary refinable ladders and provides a novel theory for the case when multiple
solutions to the same refinement equation exist.

1.3. Layout of this article

In the introductory Section2, we define the notions of shift-invariance and approxi-
mation order and make several basic observations that will be extensively used in the
sequel.
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Section3 is devoted to PSI ladders. The section begins with a summary of the known
characterization of theL2-approximation orders provided by PSI stationary and nonstation-
ary ladders. These results are then extended to general spacesWs

2 (the end of Section3.1)
and connected with the notion of the Strang–Fix conditions (Section3.2) and polynomial
reproduction (Section3.5). The results from Section3.2are in turn used in Section3.3 to
analyze the dependence of the approximation order notion on the value ofs, i.e., on the
space where the error is measured. The issue of negative approximation orders is discussed
in Section3.4.

FSI ladders are considered in Section4. It begins, analogously to Section3, with a
summary on theL2-approximation orders of FSI spaces and with the extension of these
results to the setting of Sobolev spaces. This takes up Section4.1. Section4.2focuses on the
notion of a superfunction, which is instrumental in the reduction of the FSI case to the PSI
case. This notion is further used in Section4.4to understand polynomial reproduction from
FSI spaces and in Section4.3 to establish the consistency of the notion of approximation
order as we operate in different Sobolev spaces. However, not all superfunctions are equally
useful, as is made clear in Sections4.5and4.8. Regardless of whether “good" superfunctions
exist in the underlying FSI space, there is an alternative method proposed in Section4.6
that can always be used to estimate approximation orders. The usefulness of that alternative
approach is demonstrated by an example in Section4.7. Section4.9is devoted to refinable
FSI spaces. It shows that the approximation order of stationary refinable FSI spaces is
bounded below by (a weak variant of) the decay rate of the Fourier transform of any
(nonzero) function in the space.

In Section5, applications of the theory from the preceding sections to multiple solutions
to a refinement equation are developed. We start by discussing, in Section5.1, the structure
of the solutions space to a refinement question. In Section5.2, we introduce the notion
of coherent approximation orders, which bundles together different solutions to the same
refinement equation. In Section5.3, the notion of coherent approximation order is associated
with a corresponding (novel) notion of universal supervectors; those lead to a uniform way of
constructing superfunctions in all the FSI spaces that are generated by the various solutions
to the given refinement equation.

2. SI ladders: the prelude

We start our analysis with a few elementary, yet very useful, observations concerning the
interplay between approximation orders inWs

2(R
d) on the one hand, and inL2(R

d) on the
other hand.

As mentioned before, the symbolWk
2 (R

d) denotes theSobolev space of smoothness k.
Note also the isometry

J−k : L2(R
d)→ Wk

2 (R
d) : f �→

(
(1+ | · |2)−k/2f̂

)∨
. (1)

Recall that the Sobolev spaces are ordered by embedding:Ws
2 ↪→ Wt

2 whenevers� t .
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2.1. Shift-invariance

The notion of shift-invariance is valid in any function spaceFwhose elements are defined
on Rd , and is certainly not specific toWs

2(R
d). Given such a spaceF, we consider now

SI spaces that are invariant underintegertranslations; thus, we refer to a closed subspace
S ⊂ F asshift-invariantif S is invariant under multi-integer shifts

s ∈ S �⇒ s(· − �) ∈ S, � ∈ Zd .

In agreement with the definitions of PSI and FSI ladders, aPSI spaceS� is generated by
a single function� ∈ F as the closure of

span[�(· − �) : � ∈ Zd ]
in the topology ofF, while aFSI spaceS� is the closure of

∑
�∈� S�, with � a finite subset

of F.
It is known that an FSI subspace ofL2(R

d) can be characterized on the Fourier domain
as follows:

Result 2(de Boor et al.[4]). For � ⊂ L2(R
d),

S�(L2(R
d))= {f ∈ L2(R

d) : f̂ = �∗�̂, � measurable, �(· + �) = �,
all � ∈ 2�Zd}. (2)

That is, the Fourier transform of an element ofS�(L2) is the inner product of two vector-
valued functions: the vector� (whose entries are measurable and 2�-periodic but otherwise
arbitrary), and the vector̂�. Note that we tacitly assume that the entries of� are indexed by
� (or by the same index set that is used to index�).

Since the operatorsJs commute with translations, one easily checks that

S�(W
s
2) = J−sSJs�(L2), (3)

which, together with Result2, leads to the following:

Corollary 3. For � ⊂ Ws
2(R

d),

S�(W
s
2)= {f ∈ Ws

2(R
d) : f̂ = �∗�̂, � measurable, �(· + �) = �,

all � ∈ 2�Zd}. (4)

2.2. Approximation orders

The basic idea leading to the notion of approximation order is very simple. It is the
heuristic understanding that increasing the density of translations used to define an SI space
may improve their approximation “power”. At the same time, for numerical reasons (and
also for deeper theoretical reasons), one would, almost always, change the generator(s) of
the SI space when switching fromS1 to Sh, h < 1: the new generators should be more
localized, and one way, sometime adequate sometime not, to modify the generators is by
dilation (see the definition of a stationary ladder in Section 1.2).
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The following, simple but important, result connects the approximation orders of SI
ladders inL2 to the analogous approximation orders inWs

2:

Proposition 4. The ladderS = (Sh = Sh(Ws
2))h provides approximation order k inW

s
2

if and only if (JsSh)h provides approximation orderk−s in L2, whereJs is defined as
in (1).

Proof. Js is an isometry fromWk
2 toWk−s

2 as well as fromWs
2 toL2. Thus, ifJsS provides

approximationk − s in L2 then, for everyf ∈ Wk
2 ,

dists(f, S
h) = dist0(Jsf, JsS

h)L2 �Chk−s‖Jsf ‖Wk−s
2

= Chk−s‖f ‖Wk
2
.

HenceS provides approximation orderk in Ws
2. The converse is proved in the same

manner. �

As already indicated before, the two most important cases of SI ladders are

• PSI: eachSh is anh-dilate of some PSI space, i.e.,Sh = S�h(·/h); a PSI ladder may
be stationary or nonstationary depending on whether or not the generator�h of Sh is
independent ofh.

• FSI: eachSh is anh-dilate of some FSI spaceS�h ; an FSI ladder, just like a PSI ladder,
may be stationary or nonstationary.

Nonstationary FSI ladders are broad enough to cover almost all situations of interest in
applications. Thus it is of primary importance to be able to characterize the approximation
orders provided by such ladders. It turns out that nonstationary ladders are useful not only
on their own, but also as a tool for analyzing stationary ladders.

Corollary 5. An FSI ladder(Sh:=S�h(·/h))h provides approximation order k inWs
2 if and

only if the FSI ladder(S�h
(·/h))h, �̂h:=(1+| ·/h|2)s/2�̂h, provides approximation order

k−s in L2.

Proof. In view of Proposition4, we only need to identify(JsSh)(h·) asS�h
, with �h

defined above. Now, by Corollary3, f ∈ S�h(W
s
2) iff f ∈ Ws

2 and f̂ = �∗�̂h, � being
2�-periodic. Thus,f ∈ Sh iff f ∈ Ws

2 and f̂ = �∗�̂h(h·), with � 2�/h-periodic. Thus
f ∈ JsSh iff f ∈ L2, and

f̂ = (1+ | · |2)s/2�∗�̂h(h·).
Dilating the last equation, we obtain thatf ∈ (JsSh)(h·) iff f ∈ L2 and

f̂ = (1+ | · /h|2)s/2�∗�̂h
for a 2�-periodic �. By Result 2, this last condition is equivalent tof being in
S�h

(L2). �

Note that the ladder associated with(�h)h in the above result is nonstationary even when
we assume the original one to be stationary, i.e., when we assume�h to be independent
of h.
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3. PSI ladders

We start our study of PSI ladders by recalling the characterization of theL2-approximation
order of these spaces.We then extend the result to the Sobolev spaceWs

2.The general result is
then connected with the notions of the Strang–Fix conditions and polynomial reproduction.
In turn, those latter notions allow us to understand the dependence of the approximation
order notion on the value ofs, i.e., on the space where the error is measured.

3.1. Approximation orders of PSI ladders

Note that the first part of the next result is not entirely a special case of the second part
(although it can be derived from it with ease).

Result 6(de Boor et al.[3, Theorems 1.6 and 4.3]). 1.The stationary PSI ladderS =
(Sh:=Sh(L2)), with Sh = S�(·/h), � ∈ L2(R

d), provides approximation order k if and
only if there exists a neighborhood� of 0 such that

[�̂, �̂]0
[�̂, �̂]

1

| · |2k ∈ L∞(�).

Here[�̂, �̂]:=∑
�∈2�Zd |�̂(· + �)|2, [�̂, �̂]0:=∑

�∈2�Zd\0 |�̂(· + �)|2.
2.ThenonstationaryPSI ladderS = (Sh:=Sh(L2)),withSh = S�h(·/h),�h ∈ L2(R

d),
provides approximation order k if and only if,for someh0 > 0 and some neighborhood�
of 0, the collection of functions

[�̂h, �̂h]0
[�̂h, �̂h]

1

(| · |2 + h2)k
, 0< h < h0,

lies inL∞(�) and is bounded there.

Combining Proposition4 and Result6, we obtain the analogous result for Sobolev
spaces.

Theorem 7. Let s ∈ R andk > s. Assume also that k is nonnegative.

1. The stationary PSI ladderS = (Sh:=Sh(Ws
2)), with S

h = S�(·/h), � ∈ Ws
2, provides

approximation order k if and only if there exists a neighborhood� of 0 such that

M�,s :=[�̂, �̂]
0
s

[�̂, �̂]s
1

| · |2k−2s ∈ L∞(�). (5)

Here[�̂, �̂]s :=∑
�∈2�Zd |�̂(·+�)|2| ·+�|2s , [�̂, �̂]0s :=

∑
�∈2�Zd\0 |�̂(·+�)|2| ·+�|2s .

2. The nonstationary PSI ladderS = (Sh:=Sh(Ws
2)), with S

h = S�h(·/h), �h ∈ Ws
2,

provides approximation order k if and only if,for someh0 > 0 and some neighborhood
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� of 0, the collection of functions

[�̂h, �̂h]0s
[�̂h, �̂h]s,h

1

(| · |2 + h2)k−s
, 0< h < h0 (6)

lies inL∞(�) and is bounded there.Here,[�̂h, �̂h]s,h:=[�̂h, �̂h]0s +|�̂h|2(| · |2+h2)s .

Proof. The second part of the current theorem follows from the second part of Result6 and
the PSI case of Corollary5. Together, these two results yield the requisite characterization,
but with[�̂h, �̂h]0s replaced by

∑
�∈2�Zd\0 |�̂h(·+�)|2(| ·+�|2+h2)s . However, for� �= 0,

we can replace(| · +�|2 + h2)s by its equivalent expression| · +�|2s .
It remains to show that in the stationary case, i.e., when�h = � for all h, (6) is equivalent

to (5). The fact that the formerimpliesthe latter is obvious (one should simply takeh→ 0
in (6) and invoke the uniform boundedness of the collection of functions that appears there).
For the converse, we observe that (when�h:=� for all h) the uniform boundedness of the
functions in (6) is equivalent to the validity of the inequalities

[�̂, �̂]0s
|�̂|2 � (| · |2 + h2)k

c − (| · |2 + h2)k−s
a.e.,

for some constantc > 0. Moreover, since we assumek−s > 0, we can force(|·|2+h2)k−s <
c by makingh small enough and changing� if necessary. This leaves us with

[�̂, �̂]0s
|�̂|2 �C(| · |2 + h2)k a.e.

as the requisite boundedness. This is definitely implied by (5), as the left-hand side in the
display above is independent ofh and sincek�0. �
Remark on notation: For brevity, we will use in the sequel the expressions “S�(W

s
2)

provides approximation orderk” and “� provides approximation orderk in Ws
2” to mean

that thestationaryladder generated byS�(W
s
2) provides approximation orderk in Ws

2.

3.2. Strang–Fix conditions

Given� ∈ Ws
2(R

d), andk > 0, one says that� satisfies the Strang–Fix(SF)condition
of order k[38], if �̂ has a zero of orderk at each point� ∈ 2�Zd\0. It is well known that
theL2-approximation order of a stationary PSI ladder is closely related to the order of the
SF condition satisfied by the generator� of the ladder. To be precise, a full characterization
requires a nondegeneracy condition on�̂ at the origin. First, let us cite theL2-result.

Result 8(de Boor et al.[3, Theorems 1.14, 5.14]).Assume that0 < 	1� |�̂|�	2 < ∞
a.e. on some neighborhood� of the origin.LetA:=�+ 2�Zd\0. If �̂ ∈ W


2 (A) for some

 > k+ d/2, thenS�(L2) provides approximation order k(in L2) if and only if� satisfies
the SF conditions of order k,i.e.,near the origin

|�̂(· + �)| = O(| · |k) for all � ∈ 2�Zd\0. (7)
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HereW

2 (A) is the local version ofW


2 (R
d); see[1, Chapter 7]. For our purposes, it is

only important that the norm onW

2 (A) has a subadditivity property, i.e.,∑

�

‖f ‖2
W



2 (�+�)

� const‖f ‖2
W



2 (A)

(8)

and that the Sobolev embedding theorem for such spaces still holds, in particular, that the
bounded (compact) embedding

W


2 (�+ �) ↪→ Wk∞(�+ �) (9)

is valid. Note that the condition̂� ∈ W


2 (A) is weaker than the more traditional decay

condition on�

|�| = O(| · |−k−d−�), � > 0,

which implies global smoothness of̂�.
We now show that the SF conditions also characterize approximation power in a Sobolev

space.

Theorem 9. Let k�0, s < k, � ∈ Ws
2. Suppose that,for some	1, 	2 > 0 and for some

ball � centered at the origin,

	1� |�̂|�	2 a.e. on �, (10)

‖�̂‖2
k,A:=

∑
�∈2�Zd\0

|�|2s max
:||�k ‖D

�̂‖2
L∞(�+�) <∞, (11)

where A denotes the set� + 2�Zd\0 andD denotes the monomial derivative of order
 ∈ Zd+ normalized by!. ThenS�(W

s
2) provides approximation order k(in W

s
2) if and

only if (7) holds.

Proof. Set

R:=| · |−2s
∑

�∈2�Zd\0
|�̂(· + �)|2 | · +�|2s . (12)

Suppose� provides approximation orderk inWs
2. Then (5) holds by Theorem7, or equiv-

alently, a.e. on�,

R

|�̂|2 + R = O(| · |2k−2s).

Sincek > s, and̂� is bounded on�, we conclude that, around the origin,R = O(| · |2k−2s).
This readily implies (7).

Now suppose� satisfies (7). WithRas above, we invoke (11) to conclude that

‖R‖L∞(�)�C| · |2k−2s‖�̂‖2
k,A = O(| · |2k−2s).
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However, the left-hand sideM�,s of (5) equals

| · |2s−2kR

|�̂|2 + R .

We have just argued that the numerator in this expression is bounded. The denominator of
the expression is bounded away from zero thanks to (10). This implies (5).�

Note that condition (11) was required only for the “if” implication in the above result.

Corollary 10. In the notation of Theorem9, let 
 > k + d/2 and letA:=� + 2�Zd\0.
Then the conclusions of Theorem9 remain valid when we replace condition(11)by:

(i) for s�0, the condition that̂� ∈ W

2 (A).

(ii) for s�0, the condition that(1+ | · |2)
/2� ∈ Ws
2(R

d), or the stronger condition that
� ∈ Ws

2 and� = O(| · |−k−d−�), � > 0,at∞.

Note that the first condition in (ii) above implies, whenevers�0, that�̂ ∈ W


2 (R

d),
hence is stronger than the condition assumed in (i).

Proof. It is clearly sufficient to prove that each of the conditions in (i) and (ii) implies (11).
(i): Using (9), together with the fact that the sets(�+�) are all translates of�, the Sobolev

embedding theorem applies to yield that, fors�0,

‖�̂‖2
k,A�C1

∑
�∈2�Zd\0

|�|2s‖�̂‖2
W



2 (�+�)

�C2

∑
�∈2�Zd\0

‖�̂‖2
W



2 (�+�)

.

The right-hand side in the above is bounded, thanks to (8), by a constant multiple of
‖�̂‖2

W


2 (A)

. Hence condition (11) is satisfied.

(ii): The second condition in (ii) clearly implies the first one. Now assume the first condition
in (ii), i.e., thatf :=(1+ | · |2)
/2� ∈ Ws

2. Thenf̂ is locally inL2 and∑
�∈2�Zd\0

|�|2s‖f̂ ‖2
L2(�+2�)�C‖f ‖2

Ws
2
<∞.

However,‖�̂‖W

2 (�+�)�C‖f̂ ‖L2(�+2�), and the argument in the proof of (i) then

applies to yield (11). �

3.3. Approximation orders are independent of the underlyingWs
2 space

We are now in a position to observe that the definitions of approximation order, if made
with respect to different Sobolev spaces, are consistent in the following sense.

Proposition 11. If S�(W
s
2) provides approximation orderk�0, k > s, thenS�(W

t
2) pro-

vides the same approximation order for anyt�s.

Proof. First note that� is an element ofWt
2 whenevert�s, sinceWs

2 is embedded inWt
2.
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Now note that, by Theorem7,� provides approximation orderk if and only if (5) holds.
The left-hand sideM�,s of (5) satisfies(

1−M�,s | · |2(k−s)
) ∑

�∈2�Zd\0
|�̂(· + �)|2| · +�|2s = M�,s |�̂|2| · |2k. (13)

Since‖M�,s‖L∞(�)� const�,s , the set� can be assumed to be small enough so that, e.g.,

1−M�,s | · |2(k−s)�1/2 a.e. on �.

Then ∑
�∈2�Zd\0

|�̂(· + �)|2| · +�|2t�
∑

�∈2�Zd\0
|�̂(· + �)|2| · +�|2s�2M�,s |�̂|2| · |2k.

This implies

M�,t�
∑

�∈2�Zd\0 |�̂(· + �)|2| · +�|2t
|�̂|2| · |2k �2M�,s .

Thus,S� provides approximation orderk also inWt
2. �

Proposition11 shows that� provides approximation order on the whole half-line{Wt
2 :

t�s} of Sobolev spaces once it does so in the spaceWs
2.

Let us now show that, under the regularity assumptions already used in Theorem7, the
converse also holds.

Theorem 12. Let t < s < k, k�0. Suppose that� ∈ Ws
2 and that it satisfies(10)–(11)

(with respect to s).ThenS�(W
s
2) provides approximation order k iffS�(W

t
2) provides that

same approximation order.

Proof. The “only if” implication was proved in Proposition11 without appealing to
(10)–(11).

We prove the “if” assertion as follows. First, since� provides approximation orderk in
Wt

2, while satisfying (10), it must satisfy the SF conditions of orderk (we do not need (11)
for that part), by virtue of Theorem9. Then, once� satisfies the SF conditions of orderk,
the facts that it belongs toWs

2 and satisfies (10)–(11) imply, again by Theorem9, that it
provides approximation orderk in Ws

2. �
Remark.As pointed out to us by a referee, it will be interesting to know whether one can
use thesameapproximation map to realize the aforementioned approximation orders in the
different Sobolev spaces. Our results in this section fall short of proving it, but it is very
likely to be true.

3.4. Negative approximation orders

When would it make sense to have a SI space that providesnegativeapproximation order?
Suppose we form a convolution of two compactly supported distributions�i , �̂i (0) �= 0,

i = 1,2. If each�i provides a positive approximation orderki > 0, then their convolution
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� provides approximation orderk1 + k2. This is to be expected if one assumes that the SF
conditions are equivalent to approximation power (which is almost true): then�̂ = �̂1�̂2
satisfies the SF conditions of orderk1+ k2 whenever eacĥ�i satisfies the SF conditions of
orderki . An example of a rigorous statement in this direction is as follows:

Proposition 13. Let�i ∈ Wsi
2 , i = 1,2, be nondegenerate compactly supported distribu-

tions, i.e., �̂i (0) �= 0, that provide approximation orderski > 0, ki > si , i = 1,2 in their
respective spaces.Then�:=�1 ∗ �2 provides approximation orderk1 + k2 inW

s1+s2
2 .

Proof. First observe that� ∈ Ws1+s2
2 . Indeed,

‖�‖2
W
s1+s2
2

�‖|�̂1|(1+ | · |2)s1/2‖∞‖|�̂2|(1+ | · |2)s2/2‖∞‖�1‖Ws1
2
‖�2‖Ws2

2
. (14)

Since the�i ’s are compactly supported, their Fourier transforms are entire functions. More-
over, the productŝ�i (1+|·|2)si/2, i = 1,2, are inL2, and, therefore, their inverse transforms
are inL2, too. Those inverse transforms are the result of applying a singular convolution
operator to�. Since the convolutor decays rapidly at∞, and since� is compactly sup-
ported, the result decays rapidly at∞. Altogether, we conclude that(�̂i (1+ | · |2)si/2)∨ is
in L1, and consequently eacĥ�i (1+ | · |2)si/2 must tend to zero at infinity. Therefore their
L∞-norms must be finite. So, the right-hand side of (14) is finite, hence� is inWs1+s2

2 .
Now, since we assume�i to provide approximation orderki , and sincê�i is bounded

around the origin, then (cf. the first part in the proof of Theorem9)

[�̂i , �̂i]0si = O(| · |2ki ), i = 1,2,

where we recall the notation[g, g]0s :=[g, g]s − |g|2| · |2s from Theorem7. But

[�̂, �̂]0s1+s2 �[�̂1, �̂1]0s1[�̂2, �̂2]0s2, (15)

hence

[�̂, �̂]0s1+s2 = O(| · |2k1+2k2).

Invoking the fact that̂�(0) �= 0, we finally conclude that

[�̂, �̂]0s1+s2
[�̂, �̂]s1+s2

= O(| · |2(k1+k2)−2(s1+s2)).

This, in view of Theorem7, finishes the proof. �
Now, what if, upon convolving a given distribution�1 with another distribution�2 one

discovers that the approximation order of�1 ∗ �2 is smaller than that of�1? Then it is
natural to assign a negative approximation order to the distribution�2. It makes little sense
to define the notion of negative approximation order in terms of the ability to approximate
functions. We choose, instead, the following technical definition, which is consistent with
the discussion so far, as well as with the argument used in the proof of our last result.
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Definition. Let s < k�0, and let� ∈ Ws
2. We say that the (stationary ladder generated by)

� provides approximation orderk (in Ws
2) if, for some neighborhood� of the origin,

M�,s :=[�̂, �̂]
0
s

[�̂, �̂]s
1

| · |2k−2s ∈ L∞(�).

Note that the above definition is consistent with the casek > 0. In this case, thedefinition
of approximation order is different, but the characterization provided in (5) of Theorem7
is exactly in the same terms.

Equipped with this last definition, we can extend Proposition13as follows:

Proposition 14. Let �i ∈ W
si
2 (R

d), i = 1,2, provide approximation orderki > si in
W
si
2 (R

d), i = 1,2. If the convolution product� := �1 ∗ �2 lies inW
s1+s2
2 (Rd), then it

provides approximation orderk1 + k2 there.

Proof. Sinceki > si for i = 1,2, it follows directly from the extended definition of
approximation order that

[�̂i , �̂i]0si
|�̂i |2

= O(| · |2ki ), i = 1,2.

These two estimates, together with inequality (15), imply that
[�̂,�̂]0s1+s2

|�̂|2 = O(| · |2k1+2k2),

hence

[�̂, �̂]0s1+s2
|�̂|2| · |2s1+2s2 + [�̂, �̂]0s1+s2

�
[�̂, �̂]0s1+s2
|�̂|2| · |2s1+2s2

= O(| · |2k1+2k2−2s1−2s2).

This completes the proof.�

Corollary 15. Let �i ∈ W
si
2 (R

d), i = 1,2, be compactly supported distributions that
provide approximation orderski > si inW

si
2 (R

d), i = 1,2.Then�1∗�2 provides approx-
imation orderk1 + k2 inW

s1+s2
2 (Rd).

Proof. This fact follows from Proposition14, since we know already from the proof of
Proposition13 that the convolution of two compactly supported distributions inW

si
2 (R

d),
i = 1,2, lies inWs1+s2

2 (Rd). �
Remark. In the rest of the paper, we only consider, by default, generators� of stationary
ladders that provide approximation order no smaller than 0. Note that this is the case when
� is of compact support and satisfies�̂(0) �= 0.

3.5. Polynomial reproduction

We restrict our attention in this subsection to local stationary PSI ladders, and focus on
the properties of the compactly supported generator� of the underlying ladder. To be sure,
all the results here extend, almost verbatim, to generators� with sufficient decay at∞,
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for example,|�| = O(| · |−k−d−�) at∞, with k the investigated approximation order and
� > 0.

The theory of approximation orders of local stationary PSI ladders focuses, and rightly
so, on the satisfaction of the SF conditions (cf. Section3.2, and also the application of those
conditions in Section3.3). Under the compact support assumption on�, the SF conditions
are known to be equivalent to the polynomial reproduction property, the latter being the
subject of the current subsection.3

The connection between the SF conditions and polynomial reproduction is classically
known, and can be dated back to Schoenberg (d= 1,[37]), and Strang and Fix[38]. See also
[2]. Our approach here follows[7]. Altogether, the results of this subsection are included
for completeness, especially since the polynomial reproduction property in the PSI case is
key to the understanding of the more complicated polynomial reproduction property of FSI
spaces (Section4.4), as well as the sum rules of refinable FSI spaces (Section5.3).

Suppose that� is compactly supported. Let us first attempt to connect the approximation
orders provided by its stationary PSI ladder to the SF conditions. To this end, we would
like to invoke Theorem9. This theorem requires the satisfaction of (10) and (11). Condition
(11) is satisfied once� ∈ Ws

2, as (ii) of Corollary10 shows. The fact that a compactly
supported distribution belongs to someWs

2 is well known, and follows from the fact that
it is necessarily of finite order (as a distribution). As to (10), since�̂ is continuous, this
condition is presently equivalent to the nondegeneracy requirement

�̂(0) �= 0.

Thus we obtain the following result:

Corollary 16. Let� be a compactly supported distribution,and assume that̂�(0) �= 0.
Then there existss ∈ R such that� ∈ Ws

2. Moreover,the following conditions are then
equivalent,for any givenk > 0:

(i) � satisfies the SF conditions of order k.
(ii) The stationary PSI ladder generated by� provides approximation order k(inWs

2).

Now, recall that reproducing polynomials of total degree less thankmeans that

� ∗′ �<k ⊆ �<k.

The symbol∗′ denotes thesemi-discrete convolution

g∗′ : f �→
∑
j∈Zd

g(· − j)f (j), (16)

�:=�(Rd) is the space of alld-variate polynomials, and�<k:={p ∈ � : degp < k}.
3 Prior to the publication of[3,8], approximation orders of stationary PSI ladders were usually derived directly

from the polynomial reproduction property, while the SF conditions were considered to be a technical way for the
verification of polynomial reproduction. However, as the discussion in this article clearly shows, the SF conditions
characterize the approximation orders of the ladder even when a slow decay of the generator� renders the
polynomial reproduction property meaningless.
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One way to connect the polynomial reproduction to the SF condition is via the following
variant of Poisson’s summation formula,[35],

� ∗′ f =
∑
�∈Zd

� ∗ (e�f ), e� : x �→ e2�i�·x, (17)

which is valid for every compactly supported� and everyC∞-functionf (the convergence of
the right-hand side series is in the topology of tempered distributions). Now, for a polynomial
f, one easily verifies that� ∗ (e−�f ) = 0 iff �̂ has a zero of order degf + 1 at�. Thus,
once� satisfies the SF conditions of orderk, we have that� ∗′ f = � ∗ f for all f ∈ �<k.

This establishes the sufficiency of the SF conditions, since�∗ always maps�<k into itself.
On the other hand, if� ∗′ f is a polynomial of degree< k, then (17) shows that∑

�∈Zd\{0}
� ∗ (e�f ) (18)

is also a polynomial of degree< k. This is possible[7, Proof of (2.10) Lemma]only if all
the summands in (18) vanish. In conclusion,� satisfies the SF conditions of orderk if and
only if

�∗′ = �∗, on�<k.

Since, as we already said,�<k is an invariant subspace of�∗ (with or without the SF
conditions), we finally need only to guarantee that�∗ be injective on polynomials, or
equivalently, we need to assume that�̂(0) �= 0. Indeed, the condition̂�(0) �= 0 is necessary
and sufficient for�∗ to be an automorphism on�<k (for any positive integerk), and we
arrived at:

Theorem 17. Let� be any compactly supported distribution witĥ�(0) �= 0,and let k be a
positive integer.Then� provides approximation order k in some Sobolev spaceWs

2, s < k,
if and only if it reproduces polynomials of total degree less than k.

Remark. As alluded to before in a footnote, Theorem17 could also be proved directly,
avoiding the use of the SF conditions and constructing instead a quasi-interpolantQ :
Ws

2 → S(�) such thatSp = p for anyp ∈ �<k; for a detailed discussion of this method
see[7, Section 4].

4. FSI ladders

We start this section, just like in the PSI case, by recalling the characterization of theL2-
approximation orders of FSI spaces and extending the result to the setting of Sobolev spaces.
We then focus in Section4.2on the notion of a superfunction, which leads to the reduction of
the FSI case to the PSI case. Besides, this notion proves to be very helpful in understanding
polynomial reproduction from FSI spaces (see Section4.4). In our setting ofWs

2, it also helps
to establish the consistency of the notion of approximation order as we varys (see Section
4.3). However, not every superfunction can be used for these and/or for other purposes,
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and this brings one to the notions of “good” and “bad” superfunctions that are discussed in
Section4.5. We show, in Section4.8, that there exist FSI spaces that do not contain any good
superfunctions. Regardless of whether or not good superfunctions are around, an alternative
approach, which is presented in Section4.6, can always be used to bound the approximation
order fromabove. The efficacy of this method is demonstrated in Section4.7, where we
recover the well-known example ofC1-cubics on a three-directional mesh,[6]: this is an
example of a bivariate stationary local FSI ladder that, while reproducing all polynomials
in �<4, fails to provide the “expected” approximation order 4. Finally, Section4.9applies
the results obtained in this section to the case when the vector� is refinable: in establishes a
lower bound on the approximation order provided by� in terms of the decay of the Fourier
transform of any nonzero function inS�.

4.1. Characterization of approximation power

The first three results of this section form a summary of the known characterization of
approximation power valid inL2, while the rest constitutes the characterization in the more
general setting ofWs

2.

Result 18(de Boor et al.[5, Theorem 2.2]).The stationary FSI ladderS = (Sh :=
Sh(L2)), with Sh = S�(·/h), � ⊂ L2(R

d), provides approximation order k if and only if
there exists a neighborhood� of 0 such that(

1− �̂
∗
G−1

� �̂
) 1

| · |2k ∈ L∞(�).

Here

G�:=
∑

�∈2�Zd

�̂(· + �)�̂
∗
(· + �) =

(
[�̂, �̂]

)
�,�∈�

. (19)

Also, the expressionG−1
� �̂ is taken to mean any solution to the equationG�� = �̂. A

simple linear-algebraic argument shows that the latter equation is always solvable whether
or notG� is invertible,since one of the rank-one terms in(19) is �̂�̂

∗
.

Result 19(de Boor et al.[5, Theorem 2.7]).An FSI nonstationary ladderS = (Sh

:=Sh(L2)), with Sh = S�h(·/h), �h ⊂ L2(R
d), provides approximation order k if and

only if, for someh0 > 0and some neighborhood� of the origin,the collection of functions(
1− �̂h

∗
G−1

�h
�̂h

) 1

(| · |2 + h2)k
, h < h0

lies inL∞(�) and is bounded there.

We also require the following equivalent formulation of the last characterization, in which
we use the notation:

G0
�:=

∑
�∈2�Zd\0

�̂(· + �)�̂
∗
(· + �) = G� − �̂�̂

∗
. (20)



114 O. Holtz, A. Ron / Journal of Approximation Theory 132 (2005) 97–148

Result 20(Another version of Result19). The FSI nonstationary ladderS = (Sh:=
Sh(L2)), with Sh = S�h(·/h), �h ⊂ L2(R

d), provides approximation order k if and
only if the collection of functions(M�h,s,h : 0< h < h0), where

M�,s,h : � �→ 1

(|�|2 + h2)k
inf
v∈C�

v∗G0
�(�)v

v∗G�(�)v

is bounded inL∞(�) for some neighborhood� of the origin and someh0 > 0.

Using these results, one obtains the following characterization of approximation power
in Ws

2.

Theorem 21. 1.An FSI stationary ladderS = (Sh:=Sh(Ws
2)), with S

h = S�(·/h), � ⊂
Ws

2, provides approximation orderk > 0 if and only if there exists a neighborhood� of 0
such that the function

M�,s : � �→ 1

|�|2k−2s inf
v∈C�

v∗G0
�,s(�)v

v∗G�,s(�)v
belongs to L∞(�). (21)

Here

G�,s :=
∑

�∈2�Zd

�̂(· + �)�̂
∗
(· + �)| · +�|2s ,

G0
�,s :=

∑
�∈2�Zd\0

�̂(· + �)�̂
∗
(· + �)| · +�|2s .

2.An FSI nonstationary ladderS = (Sh:=Sh(Ws
2)), with S

h = S�h(·/h), �h ⊂ Ws
2,

provides approximation orderk�0 if and only if there exists a neighborhood� of 0 and
h0 > 0 such that the collection of functions(M�,s,h : 0< h < h0), with

M�h,s,h : � �→ 1

(|�|2 + h2)k−s
inf
v

v∗G0
�h,s,h

(�)v

v∗G�h,s,h(�)
,

is bounded inL∞(�). (22)

Here,

G�h,s,h(�) :=
∑

�∈2�Zd

�̂h(�+ �)�̂h
∗
(�+ �)(|�+ �|2 + h2)s,

G0
�h,s,h(�) :=

∑
�∈2�Zd\0

�̂h(�+ �)�̂h
∗
(�+ �)(|�+ �|2 + h2)s .

Proof. The proof is analogous to that of Theorem7. In particular, part 2 of the current
theorem is a direct consequence of Result20and Proposition4.
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Now we use the result of part 2 to derive part 1. In the stationary case,�h = � for all h,
so the left-hand side of (22) becomes

M�,s,h(�)= 1

(|�|2 + h2)k−s

× inf
v

v∗
∑

�∈2�Zd\0 �̂(�+ �)�̂
∗
(�+ �)(|�+ �|2 + h2)s v

v∗
∑

�∈2�Zd �̂(�+ �)�̂
∗
(�+ �)(|�+ �|2 + h2)s v

.

Since the numerator of the infimum expression is bounded above and below by positive
multiples of v∗G0

�,sv, the collection(M�,s,h) is bounded inL∞(�) if and only if the
collection of functions

� �→ 1

(|�|2 + h2)k−s
inf
v

v∗G0
�,s(�)v

v∗G0
�,s(�)v + v∗�̂(�)�̂

∗
(�)(|�|2 + h2)sv

(23)

is bounded inL∞(�). Sincek andk − s are nonnegative, for a fixedv and a fixed� ∈ �
(assuming� is sufficiently small), the expression

1

(|�|2 + h2)k−s
v∗G0

�,s(�)v

v∗G0
�,s(�)v + v∗(�̂�̂

∗
)(�)(|�|2 + h2)sv

monotonically increases (ash→ 0) to

1

|�|2(k−s)
v∗G0

�,s(�)v

v∗G�,s(�)v
,

hence (23) monotonically increases to the function in (21).Therefore, the collection(M�,s,h)

is bounded if and only if (21) holds.�
Remarkonnotation.As in the PSI case, we shall use in the sequel language such as “an FSI

spaceS�(W
s
2) provides approximation orderk” and even “� ⊂ Ws

2 provides approximation
orderk” and will mean by that the FSI stationary ladder generated byS�(W

s
2) provides

approximation orderk in Ws
2.

TheL2-characterizations above (Results18–20) are connected to the notion of super-
functions. We will now discuss this notion, and extend it to the setting of Sobolev spaces.

4.2. Superfunctions

Let Sbe an SI space, and letS = (Sh:=S(·/h)) be the associated stationary ladder. A
functiong ∈ S ⊂ L2 is asuperfunctioninSif the PSI stationary ladder it generates provides
the same approximation order as that ofS (or, more precisely, ofS). For sure,L2 in this
definition can be replaced by any Sobolev spaceWs

2.
The question of existence of superfunctions in FSI spaces can be answered in the affir-

mative using Theorem21.

Theorem 22. Any FSI spaceS� ⊂ Ws
2(R

d) contains a superfunction.
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Proof. Let� be as in Theorem21. For each fixed� ∈ �, there exists a vectorv0(�) ∈ C�

of (e.g., Euclidean) norm of 1 that minimizes the ratiov∗G0
�,s(�)v/v

∗G�,s(�)v. Now

extendv0 to the cube[−�,�)d in an arbitrary way, provided the normv0 is everywhere
equal to 1. Finally, extendv0 so defined to a 2�-periodic vector-valued function.

Now, suppose that� provides approximation orderk. Then, in view of Theorem21, the
vectorv0 satisfies

v∗0G0
�,sv0� const| · |2k−2s(v∗0G0

�,sv0 + v∗0�̂�̂
∗
v0| · |2s) a.e. in�

or, equivalently,

(1− const| · |2(k−s))v∗0G0
�,sv0� const| · |2kv∗0�̂�̂

∗
v0 a.e. in�.

By changing� if needed (and using the fact thatk > s), we obtain that

v∗0G0
�,sv0�C| · |2kv∗0�̂�̂

∗
v0 a.e. in�

for some constantC. This implies that, for almost every fixed� ∈ �, the smallest eigenvalue
of the measurable Hermitian matrixH(�):=(G0

�,s − C| · |2k�̂�̂
∗
)(�) is nonpositive. By

Lemma 2.3.5 from[34], we can define a mapw on� such that (i) for almost every� ∈ �,
w(�) is a normalized eigenvector ofH(�) that corresponds to the minimal eigenvalue, and
(ii) w is measurable on�. Without loss, we assume that our originalv0 coincides withw
on�. In particular,v0 is now known to be measurable.

Let � be the (scalar) distribution whose Fourier transform satisfies�̂ = v∗0�̂. To show
that� is a superfunction forS�, we only need to verify that it belongs toS�, since it follows
directly from the construction of� that the spaceS� provides approximation orderk. Since

�̂ = v∗0�̂, we only need, in view of Corollary3, to show that� ∈ Ws
2. This final result is a

simple consequence of the representation�̂ = v∗0�̂, using the facts that� ⊂ Ws
2 and that

the entries ofv0 are bounded. �
This theorem extends the knownL2-result. However, in theL2-case, a superfunction was

originally constructed as the orthogonal projectionP� : L2 → S� of the sinc-function

sinc(x):=
d∏
i=1

sin(�x(i))
�x(i)

.

The fact thatP�(sinc) is a superfunction follows from the general principle:

Result 23(de Boor et al.[3]). Let S�(L2) be an FSI space that provides approximation
order k1�0, and letSg(L2) be a PSI space that provides approximation orderk2�0.
Then the PSI space generated by the orthogonal projectionP�g on S� in L2 provides
approximation ordermin{k1, k2}.

If, in Result23 above, we chooseg such thatk2�k1, andS�(L2) does not provide an
approximation order greater thank1, thenP�g is a superfunction. It is easily checked that
the approximation order provided by the spaceSsinc is infinite (i.e., exceeds any finitek),
hence the following corollary.
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Result 24(de Boor et al.[3]). An FSI spaceS�(L2) provides the same approximation or-
der as the PSI space generated byP�(sinc) in L2.

To find theL2-projection on a FSI space of a functionf, one solves Eq. (24).

Result 25(de Boor et al.[3]). TheL2-projectionP�(f ) of f ∈ L2 on an FSI spaceS�
satisfies

(P�(f ))
∧ = �∗f �̂ (24)

with �f any solution of

G��f = [�̂, f̂ ].
Here,�f is a vector-valued function(indexed by�) whose entries are measurable and2�-
periodic, and the symbol[�̂, f̂ ] stands for ([�̂, f̂ ])�∈�, where [f̂ , ĝ]:=∑

�∈Zd

f̂ (· + 2��)ĝ(· + 2��).

Remark. Results23–25are all corollaries to Theorem 3.3 of[3].
The above results extend easily to Sobolev spaces. Indeed, Results23and24require only

one assumption, viz.

PAPg = PPAgPg, (25)

whereA denotes an arbitrary SI subspace ofWs
2, andPA, Pg, PPAg are the orthogonal

projectors fromWs
2 ontoA, Sg(Ws

2), SPAg(W
s
2), respectively.

Under this condition, the analysis from[3, Section 3]leading to Results23 and24 goes
through verbatim. Since theWs

2-version of (25) is a simple consequence of theL2-version
when combined with the identityPJtAJt = JtPA (whereA is an SI subspace ofWs

2 and
PJtA the orthogonal projector onto the spaceJtA inL2), we obtain the following extension.

Theorem 26. LetS�(W
s
2) be an FSI space that provides approximation orderk1�0, and

let Sg(Ws
2) be a PSI space that provides approximation orderk2�0.Set�:=P�g,withP�

the orthogonal projection ofWs
2 ontoS�(W

s
2). Then the stationary PSI ladder generated

by� provides approximation ordermin{k1, k2}. Specifically,for everyf ∈ Ws
2 andh > 0,

dists(f, S
h
�(W

s
2))� dists(f, S

h
�(W

s
2))+ 2 dists(f, S

h
g (W

s
2)).

In particular, S�(W
s
2) provides the same approximation order as the PSI space generated

byP�(sinc) inWs
2.

Superfunctions are obviously useful if one wishes to approximate functions from a given
SI space S, for if a superfunction� is known explicitly, one can instead approximate
from the simpler spaceS�. In addition, it is already well established in theL2-theory that
superfunctions give rise to quasi-interpolants, i.e., bounded linear maps into the underlying
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SI spaceSthat reproduce polynomials contained inS(see, e.g.,[2,7]). Superfunctions were
also used in[3,5] as purely theoretical tools.

The natural expectation is that superfunctions play similar roles in the setting of Sobolev
spaces. That turns out to be the case. In particular, the superfunction method allows us to
lift painlessly various results from the PSI setup to the FSI one. This includes the discussion
concerning the consistency of the definitions of approximation orders in different Sobolev
spaces, which we embark on in the next subsection.

4.3. Approximation orders are independent of the underlyingWs
2 space

Proposition 27. If an FSI spaceS�(W
s
2) provides approximation orderk�0, k > s, then

S�(W
t
2) does so for anyt�s.

Proof. Assuming thatS�(W
s
2) provides approximation orderk, Theorem22 ascertains

thatS�(W
s
2) contains a PSI subspaceS�(W

s
2) that already provides approximation order

k. SinceS�(W
t
2) ⊃ S�(W

s
2) (as easily follows from Corollary3), � ∈ S�(W

t
2), too. By

Proposition11, S�(W
t
2) then provides approximation orderk in Wt

2, thereforeS�(W
t
2)

provides approximation order (at least)k in Wt
2. �

Similarly to the PSI case, a converse also holds under some regularity assumptions on
the superfunction.

Proposition 28. Letk > s > t , k�0.Suppose�,� ⊂ Ws
2.Suppose thatS�(W

t
2) provides

approximation order k inWt
2, and that� ∈ S�(W

t
2) is a corresponding superfunction.If �

satisfies(10)–(11),thenS�(W
s
2) provides approximation order k inW

s
2, too.

Proof. We applyTheorem12to the function� to show thatS�(W
s
2)provides approximation

orderk, which implies thatS�(W
s
2) also provides approximation order (at least)k. �

The theorem highlights a central point: it is useful to know that an FSI space con-
tains a “good” superfunction. In the current context “good” in interpreted as “satisfying
(10)–(11)”. We will come back to this issue later, but first we show how the superfunction
method reduces the polynomial reproduction issue in the FSI setup back to the simpler PSI
setup.

4.4. Polynomial reproduction

Let� be a vector of compactly supported elements inWs
2, s ∈ R. Suppose that� provides

approximation orderk > 0 in Ws
2. Let us assume, further, thatS�(W

s
2) contains agood

superfunction� is the sense that:

1. �̂(0) �= 0, and
2. � is a finite linear combination of the shifts of� (hence, in particular, is compactly

supported).

We note that the current notion of “good” is stronger (i.e., implies) the one that was discussed
at the end of the last subsection (as the argument in Section3.5shows).



O. Holtz, A. Ron / Journal of Approximation Theory 132 (2005) 97–148 119

By our assumptions here,̂� = v∗�̂, with v a vector oftrigonometric polynomials. There-
fore, with(a�)�∈� the Fourier coefficients of the entries ofv, we have the representation

� =
∑
�∈�

� ∗′ a�

and eacha� : Zd → C is finitely supported. Here,∗′ is the semi-discrete convolution, (16).

Next, sincê�(0) �= 0, andS�(W
s
2) provides approximation orderk, we conclude from

Theorem17 that�∗′ maps�<k onto itself. Writing�∗′ in terms of�, we obtain

� ∗′ f = (
∑
�∈�

� ∗′ a�) ∗′ f =
∑
�∈�

� ∗′ (a� ∗′ f ).

The above representation leads to several conclusions that we summarize in our next result:

Corollary 29. Let� be a compactly supported vector that provides approximation order
k > 0 in Ws

2, and assume thatS�(W
s
2) contains a good superfunction in the above sense.

Then there exist finitely supported sequencesa� : Zd → C, � ∈ � such that,for every
f ∈ �<k,

Tf :=
∑
�∈�

� ∗′ (a� ∗ f )

is a polynomial.Here,a�∗f denotes thediscrete convolutionofa� andf|Zd .Thepolynomial
Tf is identical to the result of the following continuous convolution:∑

�∈�

� ∗ (a� ∗ f ) =
∑
�∈�

∑
j∈Zd

a�(j)(� ∗ f )(· − j). (26)

Moreover,the mapTk:=T|�<k is an automorphism.

There are several immediate conclusions that can be derived directly from the above
corollary. For example, sinceTk can be extended to a convolution operator, it commutes
with differentiation in the sense thatDT = TD for every ∈ Zd+, and commutes also
with translations.

A simpler consequence is as follows: sinceTk is an automorphism, every monomial()�,
|�| < k, lies in its range. (Here, the symbol()� stands for the normalized monomial

()� : x �→ (x)�:=x�/�!.
We also use in the sequelD� for thenormalizedmonomial derivative.) Thus, the following
is true:

Corollary 30. Let� be as in Corollary29.Then there exist polynomials(g�)�∈Zd+ such
that, for |�| < k,∑

�∈�

� ∗′ (a� ∗ g�) = ()�.
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The result shows that every()� is writable as
∑

� � ∗′ f�,�, for suitable polynomials
(f�,�)�. However, the result shows more: it decomposes eachf�,� into a� ∗ g�, with the
first factor independent of� (and finitely supported), and the second independent of� (and
a polynomial).

The reader might wonder how realistic the assumption about the existence of a good
superfunction is. We discuss that issue in this section as well as in Section 5. A sufficient
condition for the existence of a good superfunction as above is the invertibility, in a suitable
sense, of the GramianG�,s around the origin. We also note that our results here recover
the results of[11, Section 3](cf. also[9,10]). The underlying assumption in[11] is that the
shifts of the distributions� ∈ � are linearly independent, a condition that is significantly
stronger than the Gramian invertibility that we have alluded to above. At the same time, our
derivation here is simpler due to the superfunction approach.

Next, one might also wonder how to invert the operatorT, i.e., how to compute the above
polynomials(g�)�. That inversion is the key for the so-called quasi-interpolation approach,
and is discussed in detail in[2,7] (in the PSI context; our superfunction approach already
reduced the problem to that setup). At base, we seek a simple linear functional� such that
�∗ inverts on�<k either the convolution�∗ or the mapf �→ f ∗′ �.

Among the various methods, we describe a general recursive approach (see[13,2,11]).
To this end, we need first to present this approach in the nondegenerate PSI case, i.e., when
the (single) generator� satisfies the condition̂�(0) �= 0. The superfunction method will
allow us then to lift the result to the FSI setup.

Proposition 31. Let� be a compactly supported distribution witĥ�(0) = 1 that provides
approximation order k in someWs

2, s ∈ R. Define the polynomialsg�, � ∈ Zd+, |�| < k,
by the recurrence

g�:=()� −
∑
�<�

c(�− �) g�, (27)

where

c():=(� ∗′ ())(0) = (� ∗ ())(0) = (() ∗′ �)(0),  ∈ Zd+, || < k.

Then these polynomials satisfy

()� = � ∗ g�, |�| < k. (28)

Note that for the expression() ∗′ � = ∑
j∈Zd (· − j)�(j) to make sense� needs to

be continuous. The other two representations ofc() are valid for an arbitrary compactly
supported distribution�.
Proof. By Theorem17,�∗′ reproduces all polynomials of degree< k, and hence (cf. e.g.,
[7])

� ∗′ ()� = � ∗ ()� = ()� ∗′ �, ∀� ∈ Zd+, |�| < k.

Thus,c(�) is well-defined.
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Now, given� as above, it is elementary that (since� ∗ ()0 = �̂(0) = 1)

� ∗ ()� =
∑

|�|� |�|
(� ∗ ()�−�)(0) ()� = ()� +

∑
|�|<|�|

c(�− �)()�.

However, withg� as in (27), we obtain (by convolvingg� with �, assuming by induction
that� ∗ g� = ()� for |�| < �, and using the last identity) that

� ∗ g�:=� ∗ ()� −
∑
|�|<|�|

c(�− �) ()� = ()�. � (29)

Using this proposition with respect to the superfunction�:=∑
�∈� � ∗′ a�, we obtain

the following:

Theorem 32. Under the assumptions of Corollary29,the polynomials(g�) fromCorollary
30satisfy the following recurrence relation:

g� = ()� −
∑
�<�

c(�− �) g�, (30)

where

c():=
∑
�∈�

c(,�),

while

c(,�):=
∑
j∈Zd

(� ∗ ())(j)a�(−j).

Here,� ∗ () is continuous convolution,while a� is the finitely supported sequence that
appears in Corollary30.Moreover,if each� ∈ � is continuous,we have the alternative
discrete convolution representation

c(,�):=(�|
Zd
∗ a� ∗ ()|

Zd
)(0) =

∑
j,k∈Zd

�(j) a�(k − j) (−k).

Remark. Compare the last theorem with Theorem 1 of[11].

4.5. Good and bad superfunctions

Every FSI space contains a superfunction. This positive statement can be turned negative:
the existence of a superfunction in a given FSI space tells us nothing about the structure of
the space. In contrast, Proposition28, Corollary29and Theorem32show that the existence
of “good” superfunctions does lead us to useful conclusions about the space and about the
given generating set. A particularly useful condition is that the Fourier transform of the
superfunction be bounded away from zero near the origin. This condition is important also
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from the numerical stability point of view. In view of the above, we say that a superfunction
�̂ is nondegenerate, if̂� near 0 is bounded away from zero.

We note that the nondegeneracy itself falls short of classifying “good” superfunctions.
For example, it can be checked that theL2-projection of the sinc-function on an FSI space
S ⊂ L2 is always nondegenerate as long asSprovides a positive approximation order (by
de Boor et al.[5, Corollary 2.6]). However, the superfunctions obtained in this way may
prove to be of little use due to their slow decay at∞. Thus, we require a complementary
property of a superfunction: we say that the superfunction has thefinite span propertyif it
is in thefinitespan of the shifts of the generating set�. Such superfunctions are compactly
supported if� itself is. It is proved in[4] that every local FSI space inL2 contains a
superfunction that satisfies the finite span property (with� being any compactly supported
generating set for the space).

We call a superfunctiongood, if it is nondegenerate and finitely spanned by the shifts of
�. Such superfunctions are needed for constructing quasi-interpolation schemes. Indeed,
the requirement appearing in Theorem32 is exactly that the superfunction� be good.

Corollary 3 shows that any function inS�(W
s
2) is of the form(v∗�̂)∨, for some 2�-

periodic vector-valued functionv. Theorem21 adds that the vectorv associated with a
superfunction satisfies

v∗G0
�,sv

v∗G�,sv
= O(| · |2k−2s),

with k the approximation order of the FSI spaceS�(W
s
2). The knownL2-theory of approx-

imation orders of FSI spaces offers then a recipe for constructing good superfunctions: first
solve the equationGv = �̂ around the origin (cf. Theorem25) and then approximatev
by a trigonometric polynomial vectoru such thatv − u has a zero of orderk at the origin.
This is possible whenever the GramianG is k times continuously differentiable around
the origin andG(0) is invertible (see[5, Theorem 4.2]). Next,v − u = O(| · |k) implies
v∗�̂− u∗�̂ = O(| · |k), hence(u∗�̂)∨ is a good superfunction.

OnceG(0) is not invertible, the notion of a “good” superfunction becomes more subtle.
Are we only interested in theexistenceof a superfunction� ∈ S� such that� is “reasonably
local” and�̂(0) �= 0, or do we also insist on simple ways to obtain that function from the
given generating set�? Our discussion and development focuses on the latter approach:
after all, the SI space isgivento us in terms of the generating set�, and we would like then
the analysis to stay as close as possible to this set. Once we agree on that principle, it should
be clear that “very bad” generating sets� are not going to yield good superfunctions: for
example, if� is compactly supported and̂�(0) = 0, there is no hope to get from� in a
simple way a superfunction� with �̂(0) �= 0. The ultimate question is how to define “good”
vectors�. Our suggestion is simple: these are the vectors that yield good superfunctions!

Our next results (in the next subsection) offer analysis of vectors� whose Gramian is
singular. We show the utility of this analysis by providing a new proof to a famous example
of de Boor and Höllig concerning the approximation order ofC1-cubics on a three-direction
mesh. We then provide an example of a “seemingly good” vector� that cannot yield good
superfunctions.



O. Holtz, A. Ron / Journal of Approximation Theory 132 (2005) 97–148 123

4.6. Estimating approximation orders when Gramians are singular

Theorem21 enables us, at least in principle, to determine the order of approximation
provided by a given (stationary or nonstationary) FSI ladder in any Sobolev space. But, as
we already saw in theL2-case, such analysis is hard to carry out if the Gramian| · |−2sG�,s
is singular at the origin. The problem is exacerbated by the fact that the entries ofG�,s may
be hard to compute.

Let us examine closely the source of the difficulty. Fors = 0, the computation of
approximation orders depends on estimating ratios of the form

v∗G0v

v∗Gv

around the origin. Without loss, one can assume that the vectorv is normalized pointwise. If
G is continuous at 0 and invertible there, we can then dismiss the denominator, since it does
not affect the asymptotic behavior of the above expression. In contrast, ifG is singular at the
origin, the denominator might affect the approximation order. The use of the verb “might”
is justified: roughly speaking, there is hope that the specific vectorsv that minimize the
numerator are far enough from the kernel ofG(0). Whenever this is the case, the problem is
reduced to examining the behavior of the numerator only. The current subsection translates
the above discussion into rigorous analysis.

We first provide below a theorem that establishes an upper bound on the approximation
order of an FSI space. The upper bound does not require the invertibility of the associated
Gramian. To this end, we denote by
min(A) the smallest eigenvalue of a positive-definite
Hermitian matrixA.

Theorem 33. Supposê� ⊂ L∞(�) for some neighborhood� of the origin.Given any set
I ⊆ 2�Zd\0,denote byk(�, I, s) the order of the zero that the scalar function

� �→ 
min(A(�)), A(�) :=
∑
�∈I

�̂(�+ �)�̂(�+ �)∗|�+ �|2s

has at the origin.Then the approximation order provided by the FSI spaceS�(W
s
2) is no

larger thank(�, I, s)/2.

Proof. Suppose thatS� provides approximation orderk in Ws
2. Then the characterization

from Theorem21 implies that, forv0 : � �→ v0(�) that minimizes (21) pointwise, the
expression

v∗0G0
�,sv0

v∗0G�,sv0

1

| · |2k−2s =: M�,s

is bounded in a neighborhood� of the origin. Using the identity

(1−M�,s | · |2k−2s)v∗0G0
�,sv0 = M�,s |v∗0�̂|2 | · |2k
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and the fact thatk > s, we conclude thatv∗0G�,sv0 is bounded above by a constant multiple
of |v∗0�̂|2 | · |2s (compare with the argument used in the proof of Proposition11). Thus,

inf
v

v∗G0
�,sv

v∗G�,sv
= v∗0G0

�,sv0

v∗0G�,sv0
� const

v∗0G0
�,sv0

|v∗0�̂|2| · |2s

� const inf|v|=1

v∗G0
�,sv

|v∗�̂|2| · |2s � const| · |−2s inf|v|=1
v∗G0

�,sv.

The last inequality uses the assumption that�̂ is bounded around the origin. We conclude
then that, for someC > 0 and a.e. around the origin,

inf
v

v∗G0
�,sv

v∗G�,sv
�C| · |−2s
min(G

0
�,s).

But G0
�,s − A is (pointwise) a nonnegative definite Hermitian matrix, hence, pointwise,


min(G
0
�,s)�
min(A). The desired result then follows from Theorem21. �

As alluded to before, we know quite precisely when the above upper bound matches the
associated approximation order.

Theorem 34. Supposê� ⊂ L∞(�) for some neighborhood� of the origin.Let v0 be a
normalized eigenvector ofG0

�,s associated with its minimal eigenvalue(i.e.,for a.e.� ∈ �,

the pair (
min(G
0
�,s(�)), v0(�)) is an eigenpair ofG0

�,s(�)). If |v∗0�̂| is bounded away
from zero almost everywhere in�, then the approximation order ofS�(W

s
2) is exactly

k(�, 2�Zd\0, s)/2.

Proof. One only needs to show that the approximation order ofS� is bounded below by
k(�, 2�Zd\0, s)/2. But

inf
v

v∗G0
�,sv

v∗G�,sv
�
v∗0G0

�,sv0

v∗0G�,sv0
= 
min(G

0
�,s)

|v∗0�̂|2| · |2s + 
min(G
0
�,s)

�

min(G

0
�,s)

|v∗0�̂|2| · |2s
� const| · |−2s
min(G

0
�,s).

Theorem21 then yields the requisite lower bound.�

4.7. Example: bivariateC1-cubics

The results of the last section raise two questions. The first is whether the upper bounds
provided in Theorem33 are useful, i.e., whether they can be applied to solve a nontrivial
problem. We provide in the current subsection an affirmative answer to this question.

The other, more fundamental question, is whether the setup of Theorem34 is universal,
i.e., whether we canalwaysdispense with the denominator in the characterization provided
in Theorem21. This question is intimately related to the existence of good superfunctions. In
the next subsection we provide a (-n unfortunate) negative answer to that second question.

As said, we describe now an example where Theorem33 applies in a situation when
direct evaluation of the approximation order is quite complicated. We choose the notorious
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example of an FSI space that reproduces all polynomials of order�3, but provides only
approximation order 3. The example first appears in[6]. A second, completely different,
proof of this result appears in[5]. Our proof is thus the third one for this result.

Consider the following two bivariate compactly supported piecewise polynomial func-
tions whose Fourier transforms are given by

�̂1(u, v) = i
(v(1− e−iw)− w(1− e−iv))(1− e−iu)(1− e−iv)(1− e−iw)

(uvw)2
,

�̂2(u, v) = �̂1(v, u),

wherew := u + v. These functions are known as the Fredrickson elements. With� ⊂
L2(R

2) the 2-vector consisting of the above functions, the GramianG� is invertible in a
punctured neighborhood of the origin. Hence it is still possible to compute enough coeffi-
cients in the Taylor expansion of 1− �̂

∗
G−1

� �̂ to find the first nonvanishing nonconstant
term. This complicated analysis was carried out in[5]. It shows that the first nonzero term
in that expansion is of order 6, soS� provides approximation order 3.

We use here, instead, Theorem33 to arrive at the same conclusion more easily. Let
I = {(0, 2�), (2�, 0)}. Then∑

�∈I
�̂((u, v)+ �)�̂((u, v)+ �)∗ =�1(u, v)�∗

1(u, v)+�2(u, v)�∗
2(u, v)

+ o((|u|2 + |v|2)3), (31)

where

�1(u, v)= (1− e−iu)(1− e−iv)(1− e−i(u+v))
(u+ v + 2�)2

 −2�+�iu+2�iv+iuv/2+iv2/2
u(v+2�)2

2�−�iu+iuv/2+iv2/2
u(v+2�)2

 ,
�2(u, v)= (1− e−iu)(1− e−iv)(1− e−i(u+v))

(u+ v + 2�)2

 2�−�iv+iuv/2+iu2/2
v(u+2�)2

−2�+�iv+2�iu+iuv/2+iu2/2
v(u+2�)2

 .
The trace of the matrix�1�

∗
1 + �2�

∗
2 is of order 4, whereas its determinant is of order

10, so its minimal eigenvalue vanishes to order 6 and its maximal eigenvalue to order 4.
Since the (matrix) terms that were left out of the computation are all of ordero(| · |6),
the eigenvalues of the left-hand side of (31) are also of order 6 and 4, respectively. Now
Theorem33 implies that the approximation order ofS� is at most 3.

The fact that the approximation order is at least 3 is trivial: the sum�1 + �2 yields a
superfunction which is nothing but the box splineM2,2,1 (whose approximation order is
indeed 3). The vector� is thus an example where the singularity of the Gramian does not
preclude the existence of a good superfunction.

From our standpoint, theC1-cubic vector� is “good”, since the finite span of its shifts
contains a good superfunction. The notoriety of this case is due to the difficulty in asserting
that this� provides approximation order no higher than 3. The fact that the space reproduces
all cubic polynomials is a sad, misleading, accident. The reader may claim that we ignore
the fact that� here provides an approximation order which is “disappointing”. While that
might be the case, it goes beyond the realm of this article: we are only interested in ways to



126 O. Holtz, A. Ron / Journal of Approximation Theory 132 (2005) 97–148

capture the approximation order of the given space, and not in the construction of SI spaces
that provide “satisfactory” approximation order.

4.8. Good and bad superfunctions, continued

We will now show an example of a vector� whose entries seem to be “reasonable” but
which nonetheless does not admit a good superfunction. This example of a bad�, together
with the example from the last section of a good�, illustrates the depth of the difficulty in
pinning down the notion of a good generating set for an FSI space.

Let g be a compactly supported bivariate function whose Fourier transformĝ has a zero
of orderk > 2 at each of the 2�Zd\0 points. Moreover, we assume that 1− ĝ has a zero of
orderk at the origin. There are many ways to construct such a function. For example, one
can take the univariate B-spline of orderk, apply a suitable differential operatorp(D) or
orderk−1 to it, and then use its tensor product in 2 dimensions. In this case,g is piecewise
polynomial of local degreek−1 in each of its variables, and with support[0, k]2. It provides
approximation orderk (in L2, for example).

Now, letebe the bivariate exponential with frequency(2�, 0), i.e.,e : x �→ e2�ix(1). We
define a vector� with two components

�1:=g + eD(0,2)g, �2:=g − eD(2,0)g.
Here, to recall,D� is the normalized monomial differentiation, viz., 2D(2,0)g is the second
derivative ofg in the first argument. Despite the fact that each�i provides only approxi-
mation order 2, we contend that the FSI spaceS�(L2) provides approximation orderk. We
construct, to this end, a compactly supported superfunction as follows.

We choose a vector-valued functionv with two components that are trigonometric poly-
nomials such that

v −
(
()2,0

()0,2

)
= O(| · |k+2)

around the origin. We then note that the Taylor expansion of orderk of �̂ around the point
(2�, 0) is

1

2

(−()0,2
()2,0

)
.

At the same time, the Taylor expansion of orderk of �̂ around any point of 2�Zd\0 other
than(2�, 0) is zero. From this, we conclude that the compactly supported function� that
is defined by

�̂:=v∗�̂
has a zero of orderk + 2 ateverypoint of 2�Zd\0. Finally, at the origin,̂�− | · |2ĝ has a
zero of orderk + 2.

In order to determine the approximation order provided by�, we consider the expression

[�̂, �̂] − |�̂|2
|�̂|2 = [�̂, �̂] − |�̂|2

| · |4|̂g|2 · | · |
4|̂g|2
|�̂|2 .
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The term

| · |4|̂g|2
|�̂|2

is bounded around the origin. The other term,

[�̂, �̂] − |�̂|2
| · |4|̂g|2

remains bounded (around the origin) even when multiplied by| · |−2k. Thus,� provides
approximation orderk (in L2), a fortiori � provides that approximation order.

Note that the superfunction� does not satisfy the desired condition̂�(0) �= 0. In fact,
this is necessary in a certain sense. Indeed, let� be a 2�-periodic vector-valued function
that is continuous at the origin and does not vanish there. Let us further define a functionf
by

f̂ = �∗�̂.

Then, up to a nonzero multiplicative constant, the low-order derivatives off̂ at (2�, 0)
coincide with the derivatives at the origin of the function

(�1()
(0,2) − �2()

(2,0))ĝ.

Since we assume� not to vanish at the origin, it is clear that some second order derivative of
the above expression does not vanish at the origin. As such,f cannot provide approximation
order larger than 2.

While the vector� in this example does not yield a good superfunction, it satisfies the
following positive property: we could use the truncated GramianG0

�,0 is order to determine
the approximation order ofS�. Indeed, if we normalize the given vectorv (i.e., redefine it
pointwise asv/|v|), we obtain a vector for whichv∗G0

�,0v yields the correct decay rate (k)

at the origin. This means, in turn, that the smallest eigenvalue ofG0
�,0 still determines the

approximation order of the spaceS�. The superfunction that we obtain in this way (i.e., by
using the normalizedv) is still not good: it decays painfully slowly at∞.

We close this section with two comments:

• We do not know at present of an example where the smallest eigenvalue of the truncated
GramianG0

�,s does not determine the approximation order of the space provided, of

course, that̂�(0) �= 0.
• The above example (i.e., of a case when the smallest eigenvalue ofG0

�,s determines the
approximation order while there exists no good superfunction) is very much a multivariate
phenomenon. It is not hard to prove that such a case is impossible in one variable, and
we leave it as an exercise to the interested reader.

4.9. An application: approximation orders of smooth refinable functions

We provide in this section one of the most interesting applications of superfunction
theory: lower bounds on approximation orders of smooth refinable vectors. We note that



128 O. Holtz, A. Ron / Journal of Approximation Theory 132 (2005) 97–148

approximation orders of refinable vectors are treated in more detail in the next section.
However, the current topic fits better into the realm of this section.

At base, our result will show that once� is refinable, and onceS� contains a single
nonzero function� from a certain class, the stationary ladder generated by� must provide
an approximation order that corresponds to the class of�. Our definition of the “class” in
question requires the Fourier transform of� to decay (in a weak sense) at a certain rate.

This problem has rich history in the context of PSI ladders (see the introduction to[33]).
A substantial treatment of the FSI case is given in[33]. However, that treatment is carried
out under the assumption that the GramianG� is invertible at the origin. In contrast, we
focus in this paper on the situation where there are multiple solutions to a single refinement
equation, and in such a case the Gramian of any particular solution isnot invertible at the
origin. This understanding was our motivation to look for an alternative approach to that
of [33]. It is useful to stress that, in general, refinable vectors that contain a smooth (even
analytic!) function need not provide any positive approximation order at all. (An example
of this type can be found in[33].) Thus, one must impose certain side conditions either on
the vector� or on the function�.

Let P be anr × r matrix whose entries are 2�-periodic and measurable. Let� be a
vector-valued function withr components whose entries are inWs

2 for somes ∈ R. We say
that� is refinableif the functional equation

�̂(2·) = P �̂ (32)

is satisfied.
Our goal is to prove the following result. In the result, as well as elsewhere in this

subsection, we use the following notation:

A:={� ∈ Rd : 1

2

 < |�|�
}. (33)

Here,
 ∈ (0,�) is arbitrary, but fixed.

Theorem 35. Let s�0, and let� ⊂ Ws
2 be a solution to(32).With A as in(33),assume

that there existsf ∈ S�(W
s
2) with the following properties:

1. |f̂ | is bounded above as well as away from zero on A.
2. The numbers

�m:=‖
∑

�∈2m(2�Zd\0)
|f̂ (· + �)|2‖L∞(A), m ∈ Z+

satisfy�m = O(2−2mk), for some positive k.

ThenS�(W
s
2) provides approximation order k.

We approach this result via the notion of thedual equation

v∗(2·)P = v∗. (34)

Here,v is a vector-valued function withr components. We require the dual equation to be
valid in some (small) ballU centered at the origin, and define the entries of thedual vector
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v to be equal to 0 outside[−�,�]d\U . We then extendv to a 2�-periodic vector. Thus,v is
supported onU + 2�Zd , and satisfies (34) there.

We collect in the next lemma a few simple facts about dual vectors.

Lemma 36. Let A be as in (33).Given anyv0 defined on A,Eq. (34)can be solved on the
punctured disk

U :={� : 0< |�|�
} (35)

so that the solution v satisfiesv|A = v0.Moreover,we have then,a.e. on U,

v∗(�/2m)�̂(�/2m + �) = v∗(�)�̂(�+ 2m�), all m ∈ Z+, � ∈ 2�Zd .

Proof. We definev by v∗(�):=v∗(2�)P (�), for all � ∈ 2lA, l = −1,−2, . . . . Thenv
clearly satisfies (34) (onU, and hence onU + 2�Zd ).

The second part of the lemma is obtained by iteratingm times with

v∗�̂(· + �)= v∗(2·)P �̂(· + �) = v∗(2·)P (· + �)�̂(· + �)
= v∗(2·)�̂(2(· + �)). �

Proof of Theorem 35.By Corollary3, f̂ = �∗�̂ for some 2�-periodic�. Denoting byv0
the restriction of� toA, we extendv0 to a dual vectorv by Lemma36. Defining� by

�̂:=v∗�̂,
we have, by the same lemma, that, for a.e. onA, and for every nonnegative integerm,

|�̂(�/2m)| = |f̂ (�)|.
Thus, in view of our assumptions onf, we conclude that|�̂| is bounded between two positive
constants around the origin.

Next, we prove thatS�(L2) provides approximation orderk. The argument will show, as
a by-product, that� ∈ L2.

Sincê� is bounded away from 0 around the origin, it remains to prove, in view of Result6,
that[�̂, �̂]0| · |−2k is bounded around the origin (with[�̂, �̂]0:=[�̂, �̂]− |�̂|2). Let� ∈ A,
andma positive integer. Then, by the definition of� and Lemma36

[�̂, �̂]0(�/2m) =
∑

�∈2�Zd\0
|�̂|2(�/2m + �) =

∑
�∈2�Zd\0

|f̂ |2(�+ 2m�)

� �m�C2−2mk�C|�/2m|2k.
Thus,[�̂, �̂]0 = O(| · |2k), on the punctured ballU of radius
 centered at the origin. Since
�̂ is supported onU + 2�Zd , it follows that�̂, hence�, lies inL2. Result6 then applies to
show that� provides approximation orderk in L2.

On the other hand,̂� = v∗�̂, with v measurable and 2�-periodic. Since� ∈ L2, and
s�0, we have that� ∈ Ws

2. Corollary3 shows then that� ∈ S�(W
s
2). Now, Proposition11

implies that� provides approximation orderk inWs
2, hence� provides also approximation

orderk in that space. �
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Discussion 37.As the proof of the theorem shows, there is in fact more freedom in the
choice ofA. It suffices to assume thatA is compact, that the intersectionA ∩ 2A has
measure zero, and that the union∪0

m=−∞A/2m contains a (punctured) neighborhood of the
origin. The proof remains essentially the same.

5. Vector refinement equations

In our studies so far, we considered SI spaces one at a time. There are situations, however,
where several different SI spaces may stem from one common source. In cases of this type,
it is important to study the resulting SI spaces in a cohesive, combined, way.

The best examples of this type are the multiple vector-valued solutions to refinement
equations, and this is, indeed, the topic of the current section. Let us start with the requisite
definitions.

Let P be anr × r square matrix whose entries are 2�-periodic (measurable) functions
(defined onRd ). The functional equation

�̂(2·) = P �̂, (36)

is a vector refinement equation, P is a refinement(matrix) mask, and a solution� is a
refinable vector. Here, the entries of the vector� are (measurable) functions, or, more
generally, tempered distributions, defined onRd . The rows and columns of the matrixP
are, thus, indexed by either the integers 1, . . . , r, or, more directly, by the entries of�.
In this generality, Eq. (36) has, as a rule, infinitely many linearly independent solutions.
Indeed, ifP is nonsingular around zero, then a solution�̂ can be chosen arbitrarily on a set
A of the “dyadic annulus” type introduced in Discussion37 and then continued to the rest
of the Fourier domain using the recipe

�̂(2�):=P(�)�̂(�), � ∈ 2jA, j = 0, 1,2, . . . ,

�̂(�):=P−1(�)�̂(2�), � ∈ 2jA, j = −1,−2, . . . .

Most of the solutions of the above type will decay very slowly (will not be even inL1(R
d)).

In contrast, if we assume the entries ofP to consist of trigonometric polynomials, and
if we correspondingly insist on compactly supported solutions, then the solution space
is necessarily finite dimensional (as explained in detail in the next section). The special
instance when the compactly supported solution space is one-dimensional is quite well
understood (see, e.g.,[5,9,18,24]). We are therefore primarily interested in the case when
there are multiple (in a nontrivial sense) compactly supported solutions to Eq. (36). We
denote by

R(P )

the linear space of all the solutions of (36) whose entries are compactly supported distribu-
tions.

The core of study here is the connection between properties of the refinement maskP
and its corresponding solution(s)�. SI spaces enter the discussion in a very natural way.
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For example, if the solution vector� lies inL2, then one has the inclusions

S�(L2) ⊂ D(S�(L2)),

with D the dilation operatorf �→ f (2·). Due to the above inclusion, we refer to the SI
spacesS� generated by a refinable� as arefinable SI space.

We start our study in this section with the problem ofexistenceof compactly supported
solutions to (36). Our second, and main, topic is the characterization of the approximation
orders of the FSI space generated by the solutions� to the refinement equation. This study
is based on the premise that, in the case where multiple solutions to the same equation exist,
the objective should be the interplay among those solutions, and not only the individual
properties of each one of them. In this course of study, we introduce the notions of the
combined Gramianand thecoherent approximation orderand connect them with the (i)
the approximation orders of the SI spaces generated by the solutions to the equations, (ii)
the polynomial reproduction property of the maskP, and (iii) the sum rules satisfied byP.
Finally, we already provided (in Section4.9) lower bounds on the approximation order of
a refinable SI space in terms of the smoothness of the smoothest function in that space.

5.1. Compactly supported solutions to the refinement equation

The structure of the compactly supported solutions of (36) was first completely described
in [21]. We now restate the main result of that paper and provide a different proof for it. We
use the partial order� on Zd , defined by

a�b⇐⇒ a − b ∈ Zd+.

Also, given a nonnegative integerN, we set

ZN :={� ∈ Zd+ : |�|:=�1 + · · · + �d�N}.
Finally, we recall that the definition of the monomial differential operatorD includes the
normalization factor 1/!.

Theorem 38. Given anr × r-matrix P whose entries are trigonometric polynomials,set
N :=max{n : 2n ∈ spec(P (0))}.

Then the map

� �→ ((D��̂)(0))�∈ZN
,

is a bijection between the collectionR(P ) of all compactly supported solutions of(36)and
the kernelkerL of the map

L : Cr × ZN → Cr × ZN : (w�)�∈ZN

�→
2|�|w� −

∑
0����

(D�−�P)(0) w� : � ∈ ZN
 .
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Proof. Let � be a compactly supported distributional solution to (36), and denotew�:=
(D��̂)(0), � ∈ Zd+. Since the vector-valued function̂� is entire, the vectorsw� are all
well-defined. Moreover, one easily concludes from relation (36) (by applyingD� to both
sides of that identity, expanding the right-hand side with the aid of Leibniz’ formula, and
evaluating the result at 0) that the sequence(w�)�∈Zd+ solves the infinite triangular system

2|�|w� =
∑

0����

(D�−�P)(0)w�, � ∈ Zd+. (37)

In particular,(w�)�∈ZN
∈ ker L.

Conversely, letw:=(w�)�∈ZN
∈ kerL. Thenwextends uniquely to a solution to (37) (in

order to solve uniquely forw� in (37) one needs the matrix 2|�|I − P(0) to be invertible,
which is indeed the case for every|�| > N , by our assumption on specP(0)).

Let ‖ · ‖ be any vector norm onCr . The operator norm onCr×r subordinate to‖ · ‖ will
be denoted in the same way. We claim that for some constantA > 0,

‖w�‖�A|�|/�!, all � ∈ Zd+. (38)

Let us see first that (38) yields the existence of a suitable solution to (36).
With (38) in hand, we define (with()� the normalized monomial)g:=∑

�∈Zd+ �!()�w�,
and observe that (each of the entries of)g is entire of exponential type, i.e., it satisfies

‖g(�)‖�eÃ|�|, all � ∈ Cd , (39)

where| · | denotes an arbitrary norm onCd . We need further to show that each of the entries
of g is the Fourier transform of a compactly supported distribution, which, by the Paley–
Wiener–Schwartz theorem[36, p. 375, Theorem 19.3],[31, p. 216, Exercise 7.4]amounts
to showing that (in addition to (38)) the restriction ofg to Rd has slow growth at∞. In
order to prove the requisite slow growth, we follow an argument from[24]: Denoting

C1:= sup
�∈Rd

‖P(�)‖ and C2:= sup
1� |�|�2

‖g(�)‖,

we pick� ∈ Rd , such that 1� |�| < 2. By the construction ofg, g(2·) = Pg, and hence,
for every positiven, g(2n�) = P(2n−1�) · · ·P(�)g(�). Consequently,

‖g(2n�)‖�C2C
n
1 �C2(2

n|�|)log2(C1),

a bound that evidently establishes the sought-for slow growth.
It remains to prove (38). To that end, we pickN0 ∈ N so that

2−N0‖P(0)‖ < 1,

(
3

4

)N0 1

1− 2−N0‖P(0)‖�1.

SinceP is a matrix of trigonometric polynomials, there existsA > 0 such that‖(D�P)(0)‖
�(A/2)|�|/�!, all �. Moreover, by modifyingA if need be, we may assume thatA satisfies
the estimate (38) for every� ∈ ZN0.
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In order to prove (38) for|�| > N0, we may assume, by induction, that (38) holds for all
� with |�| < |�|. Then, by (37),

‖(2|�|I − P(0))w�‖ �
∑

0��<�

A|�−�|

2|�−�|(�− �)!
A|�|

�! = A|�|
∑

0��<�

1

2|�−�|(�− �)!�!

� A|�|

�!
(

3

2

)|�|
,

hence

‖w�‖�
(

3

4

)|�|
A|�|

�!(1− 2−|�|‖P(0)‖)�
A|�|

�! .

This proves (38), and the proof is thus complete.�
The theorem can be extended to refinement equations more general than (36). For exam-

ple, we can replace the dilation by 2 by a dilation by any matrixM which isexpansive, i.e.,
its spectrum lies outside the closed unit disc.

Theorem 39. Given anr × r matrix P whose entries are trigonometric polynomials and
an expansived × d matrix M,set

N :=max{n : 0 ∈ spec{Mn − P(0)}}.
Then,the map

� �→ ((D��̂)(0))�∈ZN
,

is a bijection between the collection of all(compactly supported)solutions of the refinement
equation̂�(M·) = P �̂ on the one hand,and the kernelker L of the map

L : Cr × ZN → Cr × ZN : (w�)�∈ZN

�→
M |�|w� −

∑
0����

D�−�P(0)w� : � ∈ ZN
 ,

on the other hand.

Proof. Analogous to that of Theorem38. �
If the refinement equation is inhomogeneous, viz., a given function is added to its right-

hand side, then any solution to it is a sum of its specific solution and a solution to the
corresponding homogeneous refinement equation. This allows for generalizations of The-
orems38and39 to inhomogeneous equations as well. For the exact statement, see[21].

If P(0) is “regular” in the sense that 1 is its largest dyadic eigenvalue, the characterization
of Theorem38 is much simpler: every right 1-eigenvector ofP(0) gives rise to a solution
� ∈ R(P ). However, it is easy to generate examples when the largest dyadic eigenvalue of
P(0) is greater than 1: for example one can replaceP by 2P . In that case, the solutions in
R(2P) are obtained by differentiating suitably the solutions inR(P ). We close this section
with two results related to the current discussion. In the first, we describe a general setup
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in which the solution spaceR(P ) is decomposed into the sum of derivatives of solutions
to “regular” refinement equations. In the second result, we provide an example when such
decomposition does not exist. Since the discussion here is somewhat tangential to our main
study of approximation orders, we skip the proof of the following theorem.

Theorem 40. Given anr × r refinement mask P,letR(P ) denote the space of compactly
supported solutions to(36),and let N be the maximal integer n for which2n ∈ spec(P (0)).
Suppose thatwecanfind twor×rmatrix-valued-functionsTand̃P such that: (i)T isanalytic
and invertible around the origin, (ii)the entries ofP̃ are trigonometric polynomials, (iii)the
matrixT (2·)P−P̃ T has a zero of orderN+1at the origin,and(iv) theTaylor expansion of
degree N ofP̃ around the origin is block-diagonal and the spectrum of each block evaluated
at zero intersects the set{2j : j = 0, . . . , N} at no more than one point.Let� be inR(P ),
and assume that each of the entries of�̂ has a zero of order l at the origin.Then� admits
a representation

� =
N∑
j=l

pj (D)�j , (40)

with �j ∈ R(P/2j ), �̂j (0) �= 0, andpj is a homogeneous polynomial of degree j,j =
l, . . . , N .

As mentioned before, the solution spaceR(P ) does not always have such structure, as
the following counterexample demonstrates.

Example 41. For some masks P,the decomposition(40) from Theorem40 is not valid.

Proof. Let d = 2 and let the maskP satisfy the following conditions:

P(0) =
 1 0 0

0 2 0
0 −1 4

 , (D(0,1)P )(0) =
 0 0 0

0 0 0
0 0 1

 , (D(1,0)P )(0) = 0.

Let us show that the following inclusion fails:

span[(D��̂(0))|�|�N : � ∈ R(P ), �̂(0) = 0]

⊆
d∑
j=1

span

[
(D� (

()ej �̂
)
(0))|�|�N : � ∈ R

(
1

2
P

)]
. (41)

Hereej is the vector inZd+ with 1 in positionj and zeros elsewhere. By Theorem38, this
is equivalent to the fact that (40) fails.

The sequencesw in Cr×(N+dN−1) (in our caser = 3, d = N = 2) indexed by�, |�| < N ,
we envision as “long” vectors with componentsw�, each of lengthr, all stacked together
in some fixed order, e.g., in the graded lexicographic order of the�’s.
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Relation (41) is, again by Theorem38, equivalent to the following:

kerL0 ⊆
d∑
j=1

kerLj , (42)

where

L0 : Cr×(N+dN−1) → Cr×(N+dN−1) : (w�) �→ (2|�|I − P(0))w� −
∑

0<�<�

D�−�P(0)w�,

1� |�|�N,

Lj : Cr×(N+dN−1)→ Cr×(N+dN−1):

(w�) �→
{
(2|�|I − P(0))w� −∑

ej ��<�D
�−�P(0)w� if ��ej

w� otherwise,
1� |�|�N.

Now, (42) fails iff its dual statement

ranL∗0 ⊇ ∩dj=1 ranL∗j (43)

fails. Here (43) is obtained from (42) by taking orthogonal complements on both sides and
using the property kerA = (ranA∗)⊥, which holds, in particular, for any linear map acting
on a finite-dimensional Hilbert space.

Now letw(0,1):=
 0

0
2

 , w(1,1):=
 0

1
−2

 . Then

w:=


w(0,1)

0
0
0
0

 = L∗(0,1)


0
0
0

w(1,1)
0

 = L∗(1,0)


w(1,0)

0
0
0
0


but, by direct calculation, the vectorw is not in the range ofL∗0. �

5.2. Coherent approximation orders

The general theory of approximation orders of FSI spaces (Section 4) focuses on the
individual spaceS� and its properties. In contrast, when studying the solutions of the
refinement equation (36), we believe that the focus should be on the interplay among the
various solutions, in other words on their “common ground”. An attempt to establish a
theory that treats simultaneously all the solutions of (36) should be done with care: it is
easy to show that different solutions of the same refinement equation may have completely
different properties, as the following discussion makes clear.

Discussion 42.Forj = 1, . . . , r, let�j be a (scalar-valued) refinable function with (scalar)

maskpj . That is, eachpj is 2�-periodic and̂�j (2·) = pj �̂j . DefineP := diag(p1, . . . , pr),
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�:=(�j )rj=1. Then� is a refinable vector with maskP. For each fixedj, the vector�j whose
jth entry is�j and all other entries are 0 is refinable with respect toP. Since we may select
the original refinable elements(�j ) in a completely arbitrary manner, it is clear that the
different solutions(�j )j to the same refinement equation may be very different one from
the other.

This discussion reveals another difficulty that arises when dealing with different solutions
to the same refinement equation: withGj the Gramian of�j , that Gramian issingularat
the origin. It is well known that this is not an accident:

Result 43(Jiang and Shen[24]). Let� ⊂ L2 be a compactly supported refinable vector
with GramianG�. If G�(0) is invertible,then the spectral radius�(P (0)) ofP(0) is equal
to 1, 1 is the only eigenvalue on the unit circle,and1 is a simple eigenvalue.

That is, the Gramian of a refinable function is invertible at zero only if the spectrum of
P(0) is of a special nature, which, in particular, implies that the refinement equation has a
uniquesolution. We note that the analysis of the approximation order of this case (viz., a
refinable vector whose Gramian is invertible at the origin) is carried out in[5,18]and isnot
among our objectives here (although we will recall those results momentarily).

In order to deal with all the solutions of a fixed refinement equation in a combined fashion,
we introduce first the notions of thecombined Gramianand thecoherent approximation
order of the solutions. LetP be a refinement mask, and let(�1, . . . ,�n) be a basis for
the solution spaceR(P ) of the underlying refinement equation (36). Assuming that, for
somes ∈ R and for everyj = 1, . . . , n, �j ⊂ Ws

2(R
d), we define thecombined Gramian

GR(P),s of the refinement equation (36) to be the sumof the individual Gramians:

GR(P),s :=
n∑
j=1

G�j ,s .

Although the above definition depends on the particular basis that we choose for the solu-
tion space, our subsequent analysis ofGR(P),s is independent of the basis’ choice for the
following reason. LetB = (�1, . . . ,�n) be a basis forR(P ). We considerB as anr × n
matrix. Thanks to the identity

n∑
l=1

�̂l�̂l
∗ = B̂B̂∗, (44)

we conclude that

GR(P),s =
∑

�∈2�Zd

(B̂B̂∗| · |2s)(· + �).

A new basis forR(P ) can be written asBM, withM ann × n constant matrix. Thus the
combined Gramian for the new basis has the form

G̃R(P ),s :=
∑

�∈2�Zd

(B̂MM∗B̂∗| · |2s)(· + �).
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Therefore, for some constantsc,C > 0,

cv∗G̃R(P ),sv�v∗GR(P),sv�Cv∗G̃R(P ),sv

for any vectorv. Using the above inequalities, one can easily check that all our subsequent
results are independent of the choice ofB. We also use the notion of the truncated combined
Gramian:

G0
R(P ),s :=

n∑
j=1

G0
�j ,s .

Definition. Let P be a refinement mask whose solution spaceR(P ) lies inWs
2(R

d). Let
GR(P),s be the corresponding combined Gramian and letG0

R(P ),S be the truncated combined
Gramian. We say thatR(P ) (or, in short,P) providescoherent approximation order kif the
following condition holds: there exists a neighborhood� of 0 such that

the functionMP,s,k : � �→ 1

|�|2k−2s inf
v

v∗G0
R(P ),s(�)v

v∗GR(P),s(�)v
belongs to L∞(�).

While Theorem21 provides ample motivation for the above definition (specifically, it
shows that the coherent approximation order coincides with the usual approximation order
notion in case the solution space of (36) is one-dimensional), we note that the coherent
notion of approximation order does not translate immediately into any clear statement on
the approximation order of the individual solutions.

Discussion 44.Let us continue with the example in Discussion42. We observe that in the
case discussed there,GR(P),s = diag(G�1,s

, . . . , G�n,s), withG�j ,s the (scalar) Gramian

of �j , i.e., [�̂j , �̂j ] in theL2-case. It follows easily then that the coherent approxima-
tion order matches or exceeds the approximation order provided by�j (for any value
of j).

In order to advance our discussion, we consider vectorsv that realize the coherent ap-
proximation orderk. That is, with� ⊂ Rd some neighborhood of the origin,

� % � �→ v(�) ∈ Cr

is measurable, and, a.e. on�,

v∗(�)G0
R(P ),s(�)v(�)

v∗(�)GR(P ),s(�)v(�)
= O(|�|2k−2s). (45)
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We call suchv a universal supervector(of order k). A vectorv is a regular universal
supervectorif (45) can be replaced by the conditions that, near the origin,

v∗GR(P),sv
v∗v

∼ | · |2s and
v∗G0

R(P ),sv

v∗v
= O(| · |2k). (46)

A regular universal supervector is clearly a universal supervector.

Discussion 45.The existence of a universal supervector is implied (almost automatically)
by the definition of coherent approximation order. The proof of this fact parallels the proof
of the superfunction existence (Theorem22) and is therefore omitted. The regularity of a
universal supervectorvmay be implied by either of the following two stronger assumptions:

(1) The combined GramianGR(P),s is invertible a.e. around the origin, and the norm of
its inverse there satisfies

‖G−1
P,s‖ = O(| · |−2s).

Indeed, in that casev∗GP.sv�cv∗v| · |2s for some positive constantc, since‖G−1
P,s‖ is

proportional to the reciprocal of the smallest eigenvalue
min(GR(P ),s) of GR(P),s and
v∗GR(P),sv�
min(GR(P ),s)v

∗v. On the other hand, ifv is a universal supervector, then

v∗Gp,sv� constv∗
∑
�∈B

�̂�̂
∗| · |2sv� const| · |2s ,

where the last inequality follows from the fact that all� ∈ B are compactly supported, so
their Fourier transforms are bounded around the origin. Therefore, the first, hence all the
conditions in (46) are satisfied.

(2) For one of the solutions� ∈ R(P ), |v∗�̂|/|v|�c > 0, a.e. in some neighborhood of
the origin. Indeed, then

v∗
∑
�∈B

�̂�̂
∗| · |2sv ∼ | · |2sv∗v

and the conditions (46) follow from the fact thatv is a universal supervector.

We now connect among the notions of coherent orders, approximation orders, and regular
universal supervectors. It is worthwhile to note that the following result does not invoke
the fact thatR(P ) comprises the solutions to (36). We do not even need the fact that the
individual vectors inR(P ) are refinable.

Theorem 46. Assume that the refinement mask P provides coherent approximation order
k inWs

2(R
d). Then

(a) LetSP ⊂ Ws
2(R

d) be the SI space generated byR(P ) (i.e., it is the smallest closed SI
subspace ofWs

2(R
d) that contains each entry of each vector inR(P )). ThenSP is an

FSI space and provides approximation order k.
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(b) Let v be a regular universal supervector of order k that is bounded in a neighborhood
of the origin.Let� be a solution of the refinement equation.Then
(i) v∗G0

�,sv = O(| · |2k) around the origin.In particular, the function� defined by
�̂:=v∗�̂ satisfies the SF conditions of order k.

(ii) If, for some positive c,|v∗�̂|�c a.e. in some neighborhood of the origin,thenS�
provides approximation order k.Moreover,with � ∈ S� defined bŷ�:=v∗�̂, the
PSI spaceS� already provides that approximation order.

Proof. (a) LetB be a basis forR(P ). ThenSP = SF , with F any vector that contains all
the entries from all the vectorsb ∈ B. HenceSP is FSI.

Now, letv : [−�,�]d → Cr be a vector that realizes the coherent approximation order
k, i.e., a.e. on[−�,�]d ,

v∗G0
R(P ),sv

v∗GR(P),sv
�c| · |2k−2s . (47)

If follows that for a.e.� ∈ [−�,�]d , there exists� ∈ B such that

v∗(�)G0
�,s(�)v(�)

v∗(�)G�,s(�)v(�)
�c|�|2k−2s . (48)

This allows us to represent[−�,�]d as the disjoint union of sets��, � ∈ B such that (48)
holds for every� ∈ B and a.e.� ∈ ��. We need, furthermore, to ensure that these sets are
measurable. We argue the measurability as follows. First, sincev is measurable, so are the
functions from the left-hand side of (48). Therefore, the function

fmin : � �→ min
�∈B

v∗(�)G0
�,s(�)v(�)

v∗(�)G�,s(�)v(�)

is also measurable. Thus, once we define(��) by

��:=
{

� ∈ [−�,�]d : fmin(�) =
v∗(�)G0

�,s(�)v(�)

v∗(�)G�,s(�)v(�)

}
, � ∈ B,

we obtain the requisite measurability.
Now, let��, � ∈ B, be the 2�-periodic extensions of the characteristic functions of��,

� ∈ B. Defining�0 via its Fourier transform as follows:

�̂0:=
∑
�∈B

���̂,

we conclude from Corollary3 that each of the entries of�0 lie in SP,s . Consequently,
S�0,s ⊂ SP,s . On the other hand, the definition of�0 and inequality (47) imply that, a.e.
on [−�,�]d ,

v∗G0
�0,s

v

v∗G�0,sv
�c| · |2k−2s . (49)
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This, in view of Theorem21, shows thatS�0 provides approximation orderk (inWs
2(R

d)),
a fortiori its superspaceSP provides that order.

(b): The regularity of the supervectorv implies that, around the origin,

v∗G0
R(P ),sv

v∗v
= O(| · |2k).

Sincev is assumed bounded, we conclude that

v∗G0
R(P ),sv = O(| · |2k)

and therefore

v∗G0
�,sv = O(| · |2k)

for every� ∈ R(P ). This proves the first part of (b)(i), while the second part follows
from the fact that each of the summandsv∗| · +�|2s(�̂�̂

∗
)(· + �) v (that together make up

v∗G0
�,s v) is nonnegative, hence has to vanish to order 2k as well.

As to (b)(ii), the analysis above shows that the function� defined bŷ�:=v∗�̂ satisfies

[�̂, �̂]0s = [�̂, �̂]s − |�̂|2| · |2s = O(| · |2k)
(near the origin). Since we further assume here that|�̂|�c > 0 around the origin, we
also conclude that[�̂, �̂]s�c2| · |2s there. Thus, (5) of Theorem7 holds, and that theorem
implies thatS�(W

s
2(R

d)) provides approximation orderk. �
The first part of Theorem46 leads to the following conclusion:

Corollary 47. Let P be a refinement mask and letSP ⊂ Ws
2(R

d) be the corresponding SI
space.If P provides a coherent approximation order k,then there exists� ∈ SP for which
the PSI spaceS� ⊂ Ws

2(R
d) provides approximation order k.

Remark. Note that the combined GramianGR,s can be defined for anyfinite-dimensional
spaceR of distributional solutions to the refinement equation (36). Likewise, the notion
of (regular) universal supervectors makes sense with respect to any such spaceR. The
requirement thatR be the space of all compactly supported solutions actually plays no
role in the results of this section. The only condition used is that, for each� ∈ R, its
Fourier transform̂� be bounded around the origin. Therefore, all results of this section are
applicable to this more general setup.

5.3. Universal supervectors and sum rules

5.3.1. Known results: singleton solutions inL2(R
d)

The characterizations to-date of the approximation power of refinable vectors are confined
to theL2-setup, and assume, at a minimum, that the Gramian of the (necessarily unique)
compactly supported solution is invertible at zero (as well as at several additional points).
These characterizations allow one to deduce the approximation order provided by the refin-
able vector directly from the mask. Two relevant notions in this context areConditionZk
and thesum rules. We begin with the definition of the former.
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Definition. Given k > 0, we say that the refinement maskP satisfies ConditionZk if
there exists a vectorv of trigonometric polynomials such that, for eachl ∈ E, the vector
v∗(2·)P − �l,0v∗ has a zero or orderk at�l, while v(0) �= 0. Here,

E:={0, 1}d , (50)

is the set of vertices of thed-dimensional unit cube.

Result 48(de Boor et al.[5], Jia [18]). Let P be a refinement mask,and assume thatdim
R(P ) = 1.Let� be the unique solution of(36),and assume that� ⊂ L2(R

d) is compactly
supported,and thatG� is invertible at the origin.Then,for k ∈ N:

I. If P satisfies ConditionZk thenS� provides approximation order k.
II. If S� provides approximation order k and ifG� is invertible at each point of�E, then
P satisfies ConditionZk.

We note that the compact support assumption on� in the above-quoted result can be
weakened: the essential needed information is about the behavior of the Gramian around
E. We refer to[5,15] for more details.

ConditionZk is written on the Fourier domain. It can be equivalently expressed on the
“space” domain. The equivalent space-based formulations of ConditionZk are colloquially
known as thesum rules. We provide, for completeness, the two frequently used versions of
these sum rules. The second is taken from[5] (see also[14]), while the first is borrowed
from [18].

Result 49. Let� ⊂ L2 be compactly supported with trigonometric refinement mask P.Let
v be a vector of trigonometric polynomials.Then the following conditions are equivalent:

(a) P satisfies ConditionZk with respect to the currentv.
(b) The pairv, P satisfies the1st version of sum rules:with (v) and (P) the Fourier
coefficients of v and P,respectively,∑

�∈Zd

∑
∈Zd

v∗�−Pl+2�q(l + 2) = 2−d
∑
∈Zd

v∗−q(), l ∈ E, q ∈ �<k.

(Note thatv is a vector,P is a matrix,andq() is a scalar.)
(c) The pairv, P satisfies the2nd version of sum rules:With v� = D�v(0), � ∈ Zd+, the
Taylor coefficients of v at the origin,we have:∑

���

2|�−�|(v�−�)∗(D�P)(�l) = �l,0(v�)∗, l ∈ E, |�| < k.

Proof. The second version of the sum rules is equivalent to ConditionZk, as seen by
applyingD� to v∗(2·)P − �l,0v∗, expanding the first term by Leibniz’ rule, and evaluating
the result at�l, l ∈ E.

The equivalence of the first version to ConditionZk can be argued as follows: first, recall

that for a finitely supporteds ∈ CZd , its Fourier serieŝs has a zero of orderk at the origin



142 O. Holtz, A. Ron / Journal of Approximation Theory 132 (2005) 97–148

iff �<k lies in the kernel of the functional

�s : q �→ (s ∗ q)(0),
wheres ∗q is either the semi-discrete convolution or the discrete convolution (the statement
is true for each of the two choices) of the sequencesand the polynomialq. Letm ∈ E, and
let sm be the (vector-valued) Fourier coefficients of the functionv∗(2·)P (·+�m)−�m,0v∗.
Thus, ConditionZk tells that, for everyq ∈ �<k and for everym ∈ E,

0= �sm(q) =
∑

,	∈Zd

v∗−P	q(2+ 	)e�i	·m − �m,0
∑
∈Zd

v∗−q().

Fixing somel ∈ E, we can write	 = l′ + l + 2�, for suitable� ∈ Zd , andl′ ∈ E. Thus,

0=
∑
l′∈E

∑
,�

v∗−Pl′+l+2�q(2+ 2�+ l′ + l)e�i(l′+l)·m − �m,0
∑


v∗−q().

Multiplying the two sides of the last display bye−�il·m and summing overm, we obtain

0=
∑
l′∈E

∑
,�

v∗−Pl′+l+2�q(2+ 2�+ l′ + l)
∑
m∈E

e�il
′·m −

∑


v∗−q().

Thus,

0= 2d
∑
,�

v∗−Pl+2�q(2+ 2�+ l)−
∑



v∗−q().

Replacing by − � finishes the proof. �

5.3.2. New results: multiple solutions inWs
2

Our analysis of the multiple solution case is based on drawing a connection between uni-
versal regular supervectors on the one hand, and ConditionZk (together with its associated
sum rules) on the other hand. This approach requires some limited regularity formulated in
terms of the combined GramianGR,s of the spaceRof refinable distributions (see Theorem
53 for the precise assumption).

So, letPbe anr× r refinement mask and letRbe a finite-dimensional space of solutions
to (36) lying in some Sobolev space:R ⊂ Ws

2(R
d) (in the sense that every entry of every

vector inRlies inWs
2(R

d)). Letkbe a positive number. We consider vector-valued functions
v, that together withP andRsatisfy the following assumptions:

Assumptions 50.1.There exists a neighborhood� of the origin,such that,a.e. on�,

‖GR,s(· + �l)‖ =
{
O(1), l ∈ E\0,
O(| · |2s), l = 0.

(51)

2. The entries of v are2�-periodic and measurable.Moreover,v∗v is bounded,and
bounded away from zero,around the origin.

3. For somek > 0, and for every� ∈ R, the function� defined bŷ�:=v∗�̂ satisfies
condition(11).
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Note that Assumptions50 are valid (regardless of the value ofk) wheneverR contains
only compactly supported solutions, andv is a vector-valued trigonometric polynomial,
provided thatv(0) �= 0.

Theorem 51. Let P be anr × r refinement mask,letR ⊂ Ws
2(R

d) be a finite-dimensional
space of solutions to(36),and let v be a vector-valued function,so that P,R and v satisfy
Assumptions50with respect to somek > 0. If P and v satisfy ConditionZk, thenv∗G0

R,sv

has a zero of order2k at the origin,and,in addition,for every� ∈ R, v∗�̂− (v∗�̂)(0) =
O(| · |k), provided thatv∗�̂ is smooth at the origin.In particular:
(a) If v∗GR,sv ∼ | · |2s a.e. around the origin,then v is a universal supervector(with
respect to R)of order k,and hence R provides coherent approximation order k.This,
for example,is the case ifGR,s is invertible(a.e.)in a neighborhood of the origin,and
‖G−1

R,s‖ = O(| · |−2s) a.e. there.

(b) If, for some� ∈ R, |v∗�̂|�c > 0 a.e. around the origin,then (a) applies,and we
further conclude thatS� provides approximation order k.

Proof. Let � ∈ 2�Zd\0, and letm:=m(�)�1 be the smallest integer for which�/2m �∈
2�Zd . Let� ∈ R. We prove, by induction onm(�), thatv∗�̂(·+�) = O(| · |k). Form = 1,
we choosel ∈ E\0 such that 2�l − � ∈ 4�Zd . Since

v∗�̂(· + �) = v∗P
( ·

2
+ �l

)
�̂

( · + �
2

)
,

the claim follows from the fact thatv∗P( ·2 + �l) = O(| · |k). Form > 1, we write

v∗�̂(· + �) = v∗
( ·

2

)
�̂

( · + �
2

)
+

(
v∗P

( ·
2

)
− v∗

( ·
2

))
�̂

( · + �
2

)
.

By ConditionZk, v∗P(·/2)− v∗(·/2) = O(| · |k). In addition, sincem(�/2) = m− 1, the
induction hypothesis yields thatv∗(·/2)�̂((· + �)/2) = O(| · |k), too.

Now, fix � ∈ R and definê�:=v∗�̂. Sincev is bounded and� ∈ Ws
2, we can invoke

Corollary3 and conclude that� ∈ S�(W
s
2). Since� satisfies (11) (as stipulated in Assump-

tions50), and since, by our argument above,�̂(· + �) = O(| · |k), for every� ∈ 2�Zd\0,
we see that∑

�∈2�Zd\0
|�̂(· + �)|2| · +�|2s = O(| · |2k). (52)

However, the left-hand side in the above equality isv∗G0
�,sv, and, hence, by summing (52)

over a basis ofRwe obtain thatv∗G0
R(P ),sv = O(| · |2k).

Next, with� as above, the casel = 0 in ConditionZk together with the boundedness of
�̂ around the origin (the latter is embedded in Assumptions50) imply that

�̂(2·)− �̂ = (v∗(2·)P − v∗)�̂ = O(| · |k).
Once we assumê� to be smooth around the origin, the above implies that�̂ − �̂(0) =
O(| · |k), as claimed.
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The proofs of (a) and (b) are straightforward, hence are omitted.�
Since the case of compactly supported solutions and a trigonometric polynomialv is of

central importance here, we record separately the statement of Theorem51 for this case.

Corollary 52. Let P be a trigonometric polynomial refinement mask,let R(P ) ⊂ Ws
2 be

the space of all compactly supported solutions to the refinement equation(36),and let v be
a vector-valued trigonometric polynomial.Suppose that P and v satisfy ConditionZk for
somek > 0.Then:

1. For each� ∈ R(P ), the (compactly supported)� defined bŷ�:=v∗�̂ satisfies the
SF conditions of order k,and in addition,�̂ − �̂(0) = O(| · |k). Consequently,if
v∗(0)�̂(0) �= 0, thenS�(W

s
2) provides approximation order k,and� ∈ S�(W

s
2) is a

corresponding superfunction.
2. If v∗(0)�̂(0) �= 0 for some� ∈ R(P ), then P provides coherent approximation order k,
and v is a corresponding universal regular supervector.

At present, we do not know whether ConditionZk is necessary for the provision of
coherent approximation orderk in case dimR(P ) > 1. The results of this type that we
are able to prove make strong assumptions on the maskP. Below is one such result. The
stringent assumption here is thatP(0) = I . In what follows, we use the notationG0

R(P ),s

introduced in Section5.2for the truncated combined Gramian. We prove the result only for
s = 0, although it extends to other values ofs (at a cost of a few technical details and more
awkward notation).

Theorem 53. Let P be an r×r trigonometric polynomial refinement mask and letR(P ) be
the space of compactly supported solutions to(36).Suppose thatR(P ) ⊂ L2 and that the
combined GramianGR(P) satisfies Assumption50.1,is smooth around eachl ∈ E and is
boundly invertible around eachl ∈ E. If P(0) = I , the following conditions are equivalent:

(a) P satisfies ConditionZk with some vector v satisfying Assumptions50.2and50.3.
(b) There exists a regular universal supervector v of order k for the spaceR(P ).

In addition,a regular universal supervector v of order k can be always chosen so that,for
every� ∈ R(P ),

v∗�̂− (v∗�̂)(0) = O(| · |k).

Proof. In view of Theorem51, we only need to prove the implication (b)�⇒ (a).
We start the proof by noting the identities

GR(P)(2·) =
∑
l∈E
(PGR(P )P

∗)(· + �l) (53)

and

G0
R(P )(2·) = PG0

R(P )P
∗ +

∑
l∈E\0

(PGR(P )P
∗)(· + �l). (54)
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The first identity is straightforward (and is quite well-known; cf.[24]). The second one is
obtained by the subtraction of the identity∑

�∈B
(�̂�̂

∗
)(2·) =

∑
�∈B

P �̂�̂
∗
P ∗

from the first one. Here,B is the basis forR(P ) that was used to defineGR(P).
Let � be any 2�-periodic vector-valued function that satisfies the condition

�∗G0
R(P )� = O(| · |2k), (55)

near the origin. Then(�∗G0
R(P )�)(2·) = O(| · |2k) near the origin. Thus the evaluation at

�(2·) of the quadratic form in the right-hand side of (54) leads to a function which has a
zero of order 2k at the origin. Since each summand there is nonnegative, it follows that, for
everyl ∈ E\0,

�∗(2·)(PGR(P )P ∗)(· + �l)�(2·) = O(| · |2k).
However,GR(P) is assumed to be boundly invertible around�l, hence we must have that
�∗(2·)P (· + �l) = O(| · |k), near the origin, for everyl ∈ E\0. In addition,

�∗(2·)(PG0
R(P )P

∗)�(2·) = O(| · |2k). (56)

Now, letv be a universal supervector. Then, (55) is satisfied for� := v, hencev satisfies
the requirements in ConditionZk with respect to eachl �= 0. It remains to modifyv (if
need be) so that ConditionZk be satisfied atl = 0, too. Note that so far we have not used
out special assumption onP. Still, we already know that (56) is satisfied for� := v.

In order to complete our argument, we assume thatP = I + O(| · |k) near the origin.
We will revisit this condition after completing the main part of the proof. This additional
condition, when applied to (56) leads (once we take into account the boundedness and
self-adjointness ofG0

R(P )) to

�∗(2·)G0
R(P )�(2·) = O(| · |2k). (57)

Thus, we proved that (55) implies (57), and hence, since (55) is satisfied for� := v, we
conclude that

v∗(2n·)G0
R(P )v(2

n·) = O(| · |2k) for all n ∈ N. (58)

Our previous analysis then implies thatv∗(2n·)P (·+�l) = O(| · |k), for every integern�1,
and everyl ∈ E\0.

Now, by forming a suitable finite linear combination ofv(2n·), n = 0, 1, . . . , we can
construct a vectoru such thatu(0) = v(0), whileu−u(0) = O(| · |k) at the origin. Clearly,
u∗P(·+�l) = O(| · |k), for everyl ∈ E\0. Since bothu−u(0) andP −I have ak-fold zero
at the origin, we conclude thatu∗(2·)P − u∗ = O(| · |k). Thusu satisfies ConditionZk.

We finally contend that there is no loss of generality in the assumption thatP − I =
O(| · |k) around the origin. Indeed, consider the transformationP �→ T −1(2·)PT , where
T is a matrix-valued trigonometric polynomial, such thatT (0) is invertible. For each�
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in some small neighborhood of the origin, we have the linear isomorphism defined on
{�̂(�) : � ∈ R(P )} by

�̂(�) �→ T (�)�̂(�).

Since eacĥ� ∈ R(P ) is entire, the isomorphisms induce a corresponding one between the
spacesR(P ) andR(T −1(2·)PT ). Moreover, ConditionZk is invariant under this isomor-
phism, since the vectorv∗(2·)P − �l,0v∗ vanishes to orderk at �l for eachl ∈ E if and
only if so does the vector(v∗T )(2·)(T −1(2·)PT )− �l,0(v∗T ).

So, if we can show that we can choose a matrix-valued polynomialT (of degree smaller
thank) so thatT (0) is invertible and

PT = T (2·)+O(| · |k), (59)

then our claim will follow. To this end, letT (0) = I and let the derivatives(D�T )(0) be
defined inductively, according to the partial order of multi-integers�, as solutions to the
equation∑

0����

(D�−�P)(0)(D�T )(0) = 2|�|(D�T )(0), 0< |�| < k. (60)

This system is obtained by differentiating (59) at the origin and is equivalent to (59). For
a fixed�, the values(D�T )(0), � < � are already chosen, and the coefficient of the term
D�T (0) is 2|�| − 1 �= 0 (sinceP(0) = I ). Thus, (60) has a solution(D�T )(0). Thus,P can
be assumed to be withinO(| · |k) of the origin. This completes the proof.�

5.3.3. Coherent polynomial reproduction
We restrict our attention again to the spaceR(P ) of compactly supported solutions to the

refinement equation (36). We show that universal supervectors forR(P ) are also ultimately
connected with polynomial reproduction using the shifts of any compactly supported solu-
tion fromR(P ). In short, we show that universal supervectors provide universal polynomial
reproduction schemes:

Theorem 54. Let P be a refinement mask whose space of compactly supported solutions
R(P ) lies inWs

2(R
d). Let v be a vector-valued trigonometric polynomial such that,for

somek > 0,any one of the following conditions holds:

1. v satisfies ConditionZk.
2. v and P satisfy the1st version of the sum rules.
3. v and P satisfy the2nd version of the sum rules.
4. v is a regular universal supervector of order k.

Let a be the vector-valued sequence of the Fourier coefficients ofv∗, and let� ∈ R(P ).
Then,with a1, . . . , ar the entries of a and�1, . . . ,�r the entries of�, the map

T� : q �→
r∑
i=1

�i ∗′ (ai ∗′ q) =: � ∗′ (a ∗′ q)
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maps�<k into itself. The map is surjective(hence degree preserving)if and only if
v∗(0)�̂(0) �= 0.

Proof. By Result49, conditions 1 through 3 are all equivalent, and, by Theorem51, each
of them implies 4. Condition 4, in turns, implies that, for any� ∈ R(P ), the compactly
supported function� defined bŷ�:=v∗�̂ satisfies the SF conditions of orderk. The dis-
cussion preceding Theorem17now implies that the semi-discrete convolution operator�∗′
reproduces polynomials of total degree at mostk−1 and, moreover, preserves the degree if
� is nondegenerate, i.e.,̂�(0) �= 0. But� itself is nothing but the semidiscrete convolution
� ∗′ v̂∗. Since the convolution∗′ is associative, we see that the function� ∗′ (̂v∗ ∗′ q) is
a polynomial in�<k wheneverq ∈ �<k; moreover, it has exactly the same degree asq
wheneverv∗(0)�̂(0) = �̂(0) �= 0. �
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